0 万搏体育网址-APP安装下载“钻石公主”号邮轮新增确诊病例65例,累计病例达135例

万搏体育网址 注册最新版下载

万搏体育网址 注册

万搏体育网址注册

类型【址:a g 9 559⒐ v i p】1:许卫兵 大小:lUha6ijz31185KB 下载:EddAp2wB90592次
版本:v57705 系统:Android3.8.x以上 好评:v4ZmxkJX74612条
日期:2020-08-13 02:49:35
安卓
林英

1.【址:a g 9 559⒐ v i p】1  Although natural selection can act only through and for the good of each being, yet characters and structures, which we are apt to consider as of very trifling importance, may thus be acted on. When we see leaf-eating insects green, and bark-feeders mottled-grey; the alpine ptarmigan white in winter, the red-grouse the colour of heather, and the black-grouse that of peaty earth, we must believe that these tints are of service to these birds and insects in preserving them from danger. Grouse, if not destroyed at some period of their lives, would increase in countless numbers; they are known to suffer largely from birds of prey; and hawks are guided by eyesight to their prey, so much so, that on parts of the Continent persons are warned not to keep white pigeons, as being the most liable to destruction. Hence I can see no reason to doubt that natural selection might be most effective in giving the proper colour to each kind of grouse, and in keeping that colour, when once acquired, true and constant. Nor ought we to think that the occasional destruction of an animal of any particular colour would produce little effect: we should remember how essential it is in a flock of white sheep to destroy every lamb with the faintest trace of black. In plants the down on the fruit and the colour of the flesh are considered by botanists as characters of the most trifling importance: yet we hear from an excellent horticulturist, Downing, that in the United States smooth-skinned fruits suffer far more from a beetle, a curculio, than those with down; that purple plums suffer far more from a certain disease than yellow plums; whereas another disease attacks yellow-fleshed peaches far more than those with other coloured flesh. If, with all the aids of art, these slight differences make a great difference in cultivating the several varieties, assuredly, in a state of nature, where the trees would have to struggle with other trees and with a host of enemies, such differences would effectually settle which variety, whether a smooth or downy, a yellow or purple fleshed fruit, should succeed.In looking at many small points of difference between species, which, as far as our ignorance permits us to judge, seem to be quite unimportant, we must not forget that climate, food, &c., probably produce some slight and direct effect. It is, however, far more necessary to bear in mind that there are many unknown laws of correlation of growth, which, when one part of the organisation is modified through variation, and the modifications are accumulated by natural selection for the good of the being, will cause other modifications, often of the most unexpected nature.
2.  But we have better evidence on this subject than mere theoretical calculations, namely, the numerous recorded cases of the astonishingly rapid increase of various animals in a state of nature, when circumstances have been favourable to them during two or three following seasons. Still more striking is the evidence from our domestic animals of many kinds which have run wild in several parts of the world: if the statements of the rate of increase of slow-breeding cattle and horses in South America, and latterly in Australia, had not been well authenticated, they would have been quite incredible. So it is with plants: cases could be given of introduced plants which have become common throughout whole islands in a period of less than ten years, Several of the plants now most numerous over the wide plains of La Plata, clothing square leagues of surface almost to the exclusion of all other plants, have been introduced from Europe; and there are plants which now range in India, as I hear from Dr Falconer, from Cape Comorin to the Himalaya, which have been imported from America since its discovery. In such cases, and endless instances could be given, no one supposes that the fertility of these animals or plants has been suddenly and temporarily increased in any sensible degree. The obvious explanation is that the conditions of life have been very favourable, and that there has consequently been less destruction of the old and young, and that nearly all the young have been enabled to breed. In such cases the geometrical ratio of increase, the result of which never fails to be surprising, simply explains the extraordinarily rapid increase and wide diffusion of naturalised productions in their new homes.In a state of nature almost every plant produces seed, and amongst animals there are very few which do not annually pair. Hence we may confidently assert, that all plants and animals are tending to increase at a geometrical ratio, that all would most rapidly stock every station in which they could any how exist, and that the geometrical tendency to increase must be checked by destruction at some period of life. Our familiarity with the larger domestic animals tends, I think, to mislead us: we see no great destruction falling on them, and we forget that thousands are annually slaughtered for food, and that in a state of nature an equal number would have somehow to be disposed of.
3.  Hence I look at individual differences, though of small interest to the systematist, as of high importance for us, as being the first step towards such slight varieties as are barely thought worth recording in works on natural history. And I look at varieties which are in any degree more distinct and permanent, as steps leading to more strongly marked and more permanent varieties; and at these latter, as leading to sub-species, and to species. The passage from one stage of difference to another and higher stage may be, in some cases, due merely to the long-continued action of different physical conditions in two different regions; but I have not much faith in this view; and I attribute the passage of a variety, from a state in which it differs very slightly from its parent to one in which it differs more, to the action of natural selection in accumulating (as will hereafter be more fully explained) differences of structure in certain definite directions. Hence I believe a well-marked variety may be justly called an incipient species; but whether this belief be justifiable must be judged of by the general weight of the several facts and views given throughout this work.It need not be supposed that all varieties or incipient species necessarily attain the rank of species. They may whilst in this incipient state become extinct, or they may endure as varieties for very long periods, as has been shown to be the case by Mr Wollaston with the varieties of certain fossil land-shells in Madeira. If a variety were to flourish so as to exceed in numbers the parent species, it would then rank as the species, and the species as the variety; or it might come to supplant and exterminate the parent species; or both might co-exist, and both rank as independent species. But we shall hereafter have to return to this subject.
4.  by Charles Darwin
5.  On the other hand, in many cases, a large stock of individuals of the same species, relatively to the numbers of its enemies, is absolutely necessary for its preservation. Thus we can easily raise plenty of corn and rape-seed, &c., in our fields, because the seeds are in great excess compared with the number of birds which feed on them; nor can the birds, though having a superabundance of food at this one season, increase in number proportionally to the supply of seed, as their numbers are checked during winter: but any one who has tried, knows how troublesome it is to get seed from a few wheat or other such plants in a garden; I have in this case lost every single seed. This view of the necessity of a large stock of the same species for its preservation, explains, I believe, some singular facts in nature, such as that of very rare plants being sometimes extremely abundant in the few spots where they do occur; and that of some social plants being social, that is, abounding in individuals, even on the extreme confines of their range. For in such cases, we may believe, that a plant could exist only where the conditions of its life were so favourable that many could exist together, and thus save each other from utter destruction. I should add that the good effects of frequent intercrossing, and the ill effects of close interbreeding, probably come into play in some of these cases; but on this intricate subject I will not here enlarge.Many cases are on record showing how complex and unexpected are the checks and relations between organic beings, which have to struggle together in the same country. I will give only a single instance, which, though a simple one, has interested me. In Staffordshire, on the estate of a relation where I had ample means of investigation, there was a large and extremely barren heath, which had never been touched by the hand of man; but several hundred acres of exactly the same nature had been enclosed twenty-five years previously and planted with Scotch fir. The change in the native vegetation of the planted part of the heath was most remarkable, more than is generally seen in passing from one quite different soil to another: not only the proportional numbers of the heath-plants were wholly changed, but twelve species of plants (not counting grasses and carices) flourished in the plantations, which could not be found on the heath. The effect on the insects must have been still greater, for six insectivorous birds were very common in the plantations, which were not to be seen on the heath; and the heath was frequented by two or three distinct insectivorous birds. Here we see how potent has been the effect of the introduction of a single tree, nothing whatever else having been done, with the exception that the land had been enclosed, so that cattle could not enter. But how important an element enclosure is, I plainly saw near Farnham, in Surrey. Here there are extensive heaths, with a few clumps of old Scotch firs on the distant hill-tops: within the last ten years large spaces have been enclosed, and self-sown firs are now springing up in multitudes, so close together that all cannot live. When I ascertained that these young trees had not been sown or planted, I was so much surprised at their numbers that I went to several points of view, whence I could examine hundreds of acres of the unenclosed heath, and literally I could not see a single Scotch fir, except the old planted clumps. But on looking closely between the stems of the heath, I found a multitude of seedlings and little trees, which had been perpetually browsed down by the cattle. In one square yard, at a point some hundreds yards distant from one of the old clumps, I counted thirty-two little trees; and one of them, judging from the rings of growth, had during twenty-six years tried to raise its head above the stems of the heath, and had failed. No wonder that, as soon as the land was enclosed, it became thickly clothed with vigorously growing young firs. Yet the heath was so extremely barren and so extensive that no one would ever have imagined that cattle would have so closely and effectually searched it for food.Here we see that cattle absolutely determine the existence of the Scotch fir; but in several parts of the world insects determine the existence of cattle. Perhaps Paraguay offers the most curious instance of this; for here neither cattle nor horses nor dogs have ever run wild, though they swarm southward and northward in a feral state; and Azara and Rengger have shown that this is caused by the greater number in Paraguay of a certain fly, which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by birds. Hence, if certain insectivorous birds (whose numbers are probably regulated by hawks or beasts of prey) were to increase in Paraguay, the flies would decrease then cattle and horses would become feral, and this would certainly greatly alter (as indeed I have observed in parts of South America) the vegetation: this again would largely affect the insects; and this, as we just have seen in Staffordshire, the insectivorous birds, and so onwards in ever-increasing circles of complexity. We began this series by insectivorous birds, and we have ended with them. Not that in nature the relations can ever be as simple as this. Battle within battle must ever be recurring with varying success; and yet in the long-run the forces are so nicely balanced, that the face of nature remains uniform for long periods of time, though assuredly the merest trifle would often give the victory to one organic being over another. Nevertheless so profound is our ignorance, and so high our presumption, that we marvel when we hear of the extinction of an organic being; and as we do not see the cause, we invoke cataclysms to desolate the world, or invent laws on the duration of the forms of life!I am tempted to give one more instance showing how plants and animals, most remote in the scale of nature, are bound together by a web of complex relations. I shall hereafter have occasion to show that the exotic Lobelia fulgens, in this part of England, is never visited by insects, and consequently, from its peculiar structure, never can set a seed. Many of our orchidaceous plants absolutely require the visits of moths to remove their pollen-masses and thus to fertilise them. I have, also, reason to believe that humble-bees are indispensable to the fertilisation of the heartsease (Viola tricolor), for other bees do not visit this flower. From experiments which I have tried, I have found that the visits of bees, if not indispensable, are at least highly beneficial to the fertilisation of our clovers; but humble-bees alone visit the common red clover (Trifolium pratense), as other bees cannot reach the nectar. Hence I have very little doubt, that if the whole genus of humble-bees became extinct or very rare in England, the heartsease and red clover would become very rare, or wholly disappear. The number of humble-bees in any district depends in a great degree on the number of field-mice, which destroy their combs and nests; and Mr H. Newman, who has long attended to the habits of humble-bees, believes that 'more than two thirds of them are thus destroyed all over England.' Now the number of mice is largely dependent, as every one knows, on the number of cats; and Mr Newman says, 'Near villages and small towns I have found the nests of humble-bees more numerous than elsewhere, which I attribute to the number of cats that destroy the mice.' Hence it is quite credible that the presence of a feline animal in large numbers in a district might determine, through the intervention first of mice and then of bees, the frequency of certain flowers in that district!In the case of every species, many different checks, acting at different periods of life, and during different seasons or years, probably come into play; some one check or some few being generally the most potent, but all concurring in determining the average number or even the existence of the species. In some cases it can be shown that widely-different checks act on the same species in different districts. When we look at the plants and bushes clothing an entangled bank, we are tempted to attribute their proportional numbers and kinds to what we call chance. But how false a view is this! Every one has heard that when an American forest is cut down, a very different vegetation springs up; but it has been observed that the trees now growing on the ancient Indian mounds, in the Southern United States, display the same beautiful diversity and proportion of kinds as in the surrounding virgin forests. What a struggle between the several kinds of trees must here have gone on during long centuries, each annually scattering its seeds by the thousand; what war between insect and insect between insects, snails, and other animals with birds and beasts of prey all striving to increase, and all feeding on each other or on the trees or their seeds and seedlings, or on the other plants which first clothed the ground and thus checked the growth of the trees! Throw up a handful of feathers, and all must fall to the ground according to definite laws; but how simple is this problem compared to the action and reaction of the innumerable plants and animals which have determined, in the course of centuries, the proportional numbers and kinds of trees now growing on the old Indian ruins!The dependency of one organic being on another, as of a parasite on its prey, lies generally between beings remote in the scale of nature. This is often the case with those which may strictly be said to struggle with each other for existence, as in the case of locusts and grass-feeding quadrupeds. But the struggle almost invariably will be most severe between the individuals of the same species, for they frequent the same districts, require the same food, and are exposed to the same dangers. In the case of varieties of the same species, the struggle will generally be almost equally severe, and we sometimes see the contest soon decided: for instance, if several varieties of wheat be sown together, and the mixed seed be resown, some of the varieties which best suit the soil or climate, or are naturally the most fertile, will beat the others and so yield more seed, and will consequently in a few years quite supplant the other varieties. To keep up a mixed stock of even such extremely close varieties as the variously coloured sweet-peas, they must be each year harvested separately, and the seed then mixed in due proportion, otherwise the weaker kinds will steadily decrease in numbers and disappear. So again with the varieties of sheep: it has been asserted that certain mountain-varieties will starve out other mountain-varieties, so that they cannot be kept together. The same result has followed from keeping together different varieties of the medicinal leech. It may even be doubted whether the varieties of any one of our domestic plants or animals have so exactly the same strength, habits, and constitution, that the original proportions of a mixed stock could be kept up for half a dozen generations, if they were allowed to struggle together, like beings in a state of nature, and if the seed or young were not annually sorted.As species of the same genus have usually, though by no means invariably, some similarity in habits and constitution, and always in structure, the struggle will generally be more severe between species of the same genus, when they come into competition with each other, than between species of distinct genera. We see this in the recent extension over parts of the United States of one species of swallow having caused the decrease of another species. The recent increase of the missel-thrush in parts of Scotland has caused the decrease of the song-thrush. How frequently we hear of one species of rat taking the place of another species under the most different climates! In Russia the small Asiatic cockroach has everywhere driven before it its great congener. One species of charlock will supplant another, and so in other cases. We can dimly see why the competition should be most severe between allied forms, which fill nearly the same place in the economy of nature; but probably in no one case could we precisely say why one species has been victorious over another in the great battle of life.A corollary of the highest importance may be deduced from the foregoing remarks, namely, that the structure of every organic being is related, in the most essential yet often hidden manner, to that of all other organic beings, with which it comes into competition for food or residence, or from which it has to escape, or on which it preys. This is obvious in the structure of the teeth and talons of the tiger; and in that of the legs and claws of the parasite which clings to the hair on the tiger's body. But in the beautifully plumed seed of the dandelion, and in the flattened and fringed legs of the water-beetle, the relation seems at first confined to the elements of air and water. Yet the advantage of plumed seeds no doubt stands in the closest relation to the land being already thickly clothed by other plants; so that the seeds may be widely distributed and fall on unoccupied ground. In the water-beetle, the structure of its legs, so well adapted for diving, allows it to compete with other aquatic insects, to hunt for its own prey, and to escape serving as prey to other animals.The store of nutriment laid up within the seeds of many plants seems at first sight to have no sort of relation to other plants. But from the strong growth of young plants produced from such seeds (as peas and beans), when sown in the midst of long grass, I suspect that the chief use of the nutriment in the seed is to favour the growth of the young seedling, whilst struggling with other plants growing vigorously all around.
6.  In regard to plants, there is another means of observing the accumulated effects of selection namely, by comparing the diversity of flowers in the different varieties of the same species in the flower-garden; the diversity of leaves, pods, or tubers, or whatever part is valued, in the kitchen-garden, in comparison with the flowers of the same varieties; and the diversity of fruit of the same species in the orchard, in comparison with the leaves and flowers of the same set of varieties. See how different the leaves of the cabbage are, and how extremely alike the flowers; how unlike the flowers of the heartsease are, and how alike the leaves; how much the fruit of the different kinds of gooseberries differ in size, colour, shape, and hairiness, and yet the flowers present very slight differences. It is not that the varieties which differ largely in some one point do not differ at all in other points; this is hardly ever, perhaps never, the case. The laws of correlation of growth, the importance of which should never be overlooked, will ensure some differences; but, as a general rule, I cannot doubt that the continued selection of slight variations, either in the leaves, the flowers, or the fruit, will produce races differing from each other chiefly in these characters.It may be objected that the principle of selection has been reduced to methodical practice for scarcely more than three-quarters of a century; it has certainly been more attended to of late years, and many treatises have been published on the subject; and the result, I may add, has been, in a corresponding degree, rapid and important. But it is very far from true that the principle is a modern discovery. I could give several references to the full acknowledgement of the importance of the principle in works of high antiquity. In rude and barbarous periods of English history choice animals were often imported, and laws were passed to prevent their exportation: the destruction of horses under a certain size was ordered, and this may be compared to the 'roguing' of plants by nurserymen. The principle of selection I find distinctly given in an ancient Chinese encyclopaedia. Explicit rules are laid down by some of the Roman classical writers. From passages in Genesis, it is clear that the colour of domestic animals was at that early period attended to. Savages now sometimes cross their dogs with wild canine animals, to improve the breed, and they formerly did so, as is attested by passages in Pliny. The savages in South Africa match their draught cattle by colour, as do some of the Esquimaux their teams of dogs. Livingstone shows how much good domestic breeds are valued by the negroes of the interior of Africa who have not associated with Europeans. Some of these facts do not show actual selection, but they show that the breeding of domestic animals was carefully attended to in ancient times, and is now attended to by the lowest savages. It would, indeed, have been a strange fact, had attention not been paid to breeding, for the inheritance of good and bad qualities is so obvious.At the present time, eminent breeders try by methodical selection, with a distinct object in view, to make a new strain or sub-breed, superior to anything existing in the country. But, for our purpose, a kind of Selection, which may be called Unconscious, and which results from every one trying to possess and breed from the best individual animals, is more important. Thus, a man who intends keeping pointers naturally tries to get as good dogs as he can, and afterwards breeds from his own best dogs, but he has no wish or expectation of permanently altering the breed. Nevertheless I cannot doubt that this process, continued during centuries, would improve and modify any breed, in the same way as Bakewell, Collins, &c., by this very same process, only carried on more methodically, did greatly modify, even during their own lifetimes, the forms and qualities of their cattle. Slow and insensible changes of this kind could never be recognised unless actual measurements or careful drawings of the breeds in question had been made long ago, which might serve for comparison. In some cases, however, unchanged or but little changed individuals of the same breed may be found in less civilised districts, where the breed has been less improved. There is reason to believe that King Charles's spaniel has been unconsciously modified to a large extent since the time of that monarch. Some highly competent authorities are convinced that the setter is directly derived from the spaniel, and has probably been slowly altered from it. It is known that the English pointer has been greatly changed within the last century, and in this case the change has, it is believed, been chiefly effected by crosses with the fox-hound; but what concerns us is, that the change has been effected unconsciously and gradually, and yet so effectually, that, though the old Spanish pointer certainly came from Spain, Mr Barrow has not seen, as I am informed by him, any native dog in Spain like our pointer.By a similar process of selection, and by careful training, the whole body of English racehorses have come to surpass in fleetness and size the parent Arab stock, so that the latter, by the regulations for the Goodwood Races, are favoured in the weights they carry. Lord Spencer and others have shown how the cattle of England have increased in weight and in early maturity, compared with the stock formerly kept in this country. By comparing the accounts given in old pigeon treatises of carriers and tumblers with these breeds as now existing in Britain, India, and Persia, we can, I think, clearly trace the stages through which they have insensibly passed, and come to differ so greatly from the rock-pigeon.

计划指导

1.  Look at a plant in the midst of its range, why does it not double or quadruple its numbers? We know that it can perfectly well withstand a little more heat or cold, dampness or dryness, for elsewhere it ranges into slightly hotter or colder, damper or drier districts. In this case we can clearly see that if we wished in imagination to give the plant the power of increasing in number, we should have to give it some advantage over its competitors, or over the animals which preyed on it. On the confines of its geographical range, a change of constitution with respect to climate would clearly be an advantage to our plant; but we have reason to believe that only a few plants or animals range so far, that they are destroyed by the rigour of the climate alone. Not until we reach the extreme confines of life, in the arctic regions or on the borders of an utter desert, will competition cease. The land may be extremely cold or dry, yet there will be competition between some few species, or between the individuals of the same species, for the warmest or dampest spots.
2.  In the case of most of our anciently domesticated animals and plants, I do not think it is possible to come to any definite conclusion, whether they have descended from one or several species. The argument mainly relied on by those who believe in the multiple origin of our domestic animals is, that we find in the most ancient records, more especially on the monuments of Egypt, much diversity in the breeds; and that some of the breeds closely resemble, perhaps are identical with, those still existing. Even if this latter fact were found more strictly and generally true than seems to me to be the case, what does it show, but that some of our breeds originated there, four or five thousand years ago? But Mr Horner's researches have rendered it in some degree probable that man sufficiently civilized to have manufactured pottery existed in the valley of the Nile thirteen or fourteen thousand years ago; and who will pretend to say how long before these ancient periods, savages, like those of Tierra del Fuego or Australia, who possess a semi-domestic dog, may not have existed in Egypt?The whole subject must, I think, remain vague; nevertheless, I may, without here entering on any details, state that, from geographical and other considerations, I think it highly probable that our domestic dogs have descended from several wild species. In regard to sheep and goats I can form no opinion. I should think, from facts communicated to me by Mr Blyth, on the habits, voice, and constitution, &c., of the humped Indian cattle, that these had descended from a different aboriginal stock from our European cattle; and several competent judges believe that these latter have had more than one wild parent. With respect to horses, from reasons which I cannot give here, I am doubtfully inclined to believe, in opposition to several authors, that all the races have descended from one wild stock. Mr Blyth, whose opinion, from his large and varied stores of knowledge, I should value more than that of almost any one, thinks that all the breeds of poultry have proceeded from the common wild Indian fowl (Gallus bankiva). In regard to ducks and rabbits, the breeds of which differ considerably from each other in structure, I do not doubt that they all have descended from the common wild duck and rabbit.The doctrine of the origin of our several domestic races from several aboriginal stocks, has been carried to an absurd extreme by some authors. They believe that every race which breeds true, let the distinctive characters be ever so slight, has had its wild prototype. At this rate there must have existed at least a score of species of wild cattle, as many sheep, and several goats in Europe alone, and several even within Great Britain. One author believes that there formerly existed in Great Britain eleven wild species of sheep peculiar to it! When we bear in mind that Britain has now hardly one peculiar mammal, and France but few distinct from those of Germany and conversely, and so with Hungary, Spain, &c., but that each of these kingdoms possesses several peculiar breeds of cattle, sheep, &c., we must admit that many domestic breeds have originated in Europe; for whence could they have been derived, as these several countries do not possess a number of peculiar species as distinct parent-stocks? So it is in India. Even in the case of the domestic dogs of the whole world, which I fully admit have probably descended from several wild species, I cannot doubt that there has been an immense amount of inherited variation. Who can believe that animals closely resembling the Italian greyhound, the bloodhound, the bull-dog, or Blenheim spaniel, &c. so unlike all wild Canidae ever existed freely in a state of nature? It has often been loosely said that all our races of dogs have been produced by the crossing of a few aboriginal species; but by crossing we can get only forms in some degree intermediate between their parents; and if we account for our several domestic races by this process, we must admit the former existence of the most extreme forms, as the Italian greyhound, bloodhound, bull-dog, &c., in the wild state. Moreover, the possibility of making distinct races by crossing has been greatly exaggerated. There can be no doubt that a race may be modified by occasional crosses, if aided by the careful selection of those individual mongrels, which present any desired character; but that a race could be obtained nearly intermediate between two extremely different races or species, I can hardly believe. Sir J. Sebright expressly experimentised for this object, and failed. The offspring from the first cross between two pure breeds is tolerably and sometimes (as I have found with pigeons) extremely uniform, and everything seems simple enough; but when these mongrels are crossed one with another for several generations, hardly two of them will be alike, and then the extreme difficulty, or rather utter hopelessness, of the task becomes apparent. Certainly, a breed intermediate between two very distinct breeds could not be got without extreme care and long-continued selection; nor can I find a single case on record of a permanent race having been thus formed.On the Breeds of the Domestic pigeon.
3.  --------------------------------------------------------------------------------
4.  But we may go further than this. The original species of our genus were supposed to resemble each other in unequal degrees, as is so generally the case in nature; species (A) being more nearly related to B, C, and D, than to the other species; and species (I) more to G, H, K, L, than to the others. These two species (A) and (I), were also supposed to be very common and widely diffused species, so that they must originally have had some advantage over most of the other species of the genus. Their modified descendants, fourteen in number at the fourteen-thousandth generation, will probably have inherited some of the same advantages: they have also been modified and improved in a diversified manner at each stage of descent, so as to have become adapted to many related places in the natural economy of their country. It seems, therefore, to me extremely probable that they will have taken the places of, and thus exterminated, not only their parents (A) and (I), but likewise some of the original species which were most nearly related to their parents. Hence very few of the original species will have transmitted offspring to the fourteen-thousandth generation. We may suppose that only one (F), of the two species which were least closely related to the other nine original species, has transmitted descendants to this late stage of descent.The new species in our diagram descended from the original eleven species, will now be fifteen in number. Owing to the divergent tendency of natural selection, the extreme amount of difference in character between species a14 and z14 will be much greater than that between the most different of the original eleven species. The new species, moreover, will be allied to each other in a widely different manner. Of the eight descendants from (A) the three marked a14, q14, p14, will be nearly related from having recently branched off from a14; b14 and f14, from having diverged at an earlier period from a5, will be in some degree distinct from the three first-named species; and lastly, o14, e14, and m14, will be nearly related one to the other, but from having diverged at the first commencement of the process of modification, will be widely different from the other five species, and may constitute a sub-genus or even a distinct genus. The six descendants from (I) will form two sub-genera or even genera. But as the original species (I) differed largely from (A), standing nearly at the extreme points of the original genus, the six descendants from (I) will, owing to inheritance, differ considerably from the eight descendants from (A); the two groups, moreover, are supposed to have gone on diverging in different directions. The intermediate species, also (and this is a very important consideration), which connected the original species (A) and (I), have all become, excepting (F), extinct, and have left no descendants. Hence the six new species descended from (I), and the eight descended from (A), will have to be ranked as very distinct genera, or even as distinct sub-families.Thus it is, as I believe, that two or more genera are produced by descent, with modification, from two or more species of the same genus. And the two or more parent-species are supposed to have descended from some one species of an earlier genus. In our diagram, this is indicated by the broken lines, beneath the capital letters, converging in sub-branches downwards towards a single point; this point representing a single species, the supposed single parent of our several new sub-genera and genera.
5.  No doubt it is a very surprising fact that characters should reappear after having been lost for many, perhaps for hundreds of generations. But when a breed has been crossed only once by some other breed, the offspring occasionally show a tendency to revert in character to the foreign breed for many generations some say, for a dozen or even a score of generations. After twelve generations, the proportion of blood, to use a common expression, of any one ancestor, is only 1 in 2048; and yet, as we see, it is generally believed that a tendency to reversion is retained by this very small proportion of foreign blood. In a breed which has not been crossed, but in which both parents have lost some character which their progenitor possessed, the tendency, whether strong or weak, to reproduce the lost character might be, as was formerly remarked, for all that we can see to the contrary, transmitted for almost any number of generations. When a character which has been lost in a breed, reappears after a great number of generations, the most probable hypothesis is, not that the offspring suddenly takes after an ancestor some hundred generations distant, but that in each successive generation there has been a tendency to reproduce the character in question, which at last, under unknown favourable conditions, gains an ascendancy. For instance, it is probable that in each generation of the barb-pigeon, which produces most rarely a blue and black-barred bird, there has been a tendency in each generation in the plumage to assume this colour. This view is hypothetical, but could be supported by some facts; and I can see no more abstract improbability in a tendency to produce any character being inherited for an endless number of generations, than in quite useless or rudimentary organs being, as we all know them to be, thus inherited. Indeed, we may sometimes observe a mere tendency to produce a rudiment inherited: for instance, in the common snapdragon (Antirrhinum) a rudiment of a fifth stamen so often appears, that this plant must have an inherited tendency to produce it.As all the species of the same genus are supposed, on my theory, to have descended from a common parent, it might be expected that they would occasionally vary in an analogous manner; so that a variety of one species would resemble in some of its characters another species; this other species being on my view only a well-marked and permanent variety. But characters thus gained would probably be of an unimportant nature, for the presence of all important characters will be governed by natural selection, in accordance with the diverse habits of the species, and will not be left to the mutual action of the conditions of life and of a similar inherited constitution. It might further be expected that the species of the same genus would occasionally exhibit reversions to lost ancestral characters. As, however, we never know the exact character of the common ancestor of a group, we could not distinguish these two cases: if, for instance, we did not know that the rock-pigeon was not feather-footed or turn-crowned, we could not have told, whether these characters in our domestic breeds were reversions or only analogous variations; but we might have inferred that the blueness was a case of reversion, from the number of the markings, which are correlated with the blue tint, and which it does not appear probable would all appear together from simple variation. More especially we might have inferred this, from the blue colour and marks so often appearing when distinct breeds of diverse colours are crossed. Hence, though under nature it must generally be left doubtful, what cases are reversions to an anciently existing character, and what are new but analogous variations, yet we ought, on my theory, sometimes to find the varying offspring of a species assuming characters (either from reversion or from analogous variation) which already occur in some members of the same group. And this undoubtedly is the case in nature.A considerable part of the difficulty in recognising a variable species in our systematic works, is due to its varieties mocking, as it were, come of the other species of the same genus. A considerable catalogue, also, could be given of forms intermediate between two other forms, which themselves must be doubtfully ranked as either varieties or species, that the one in varying has assumed some of the characters of the other, so as to produce the intermediate form. But the best evidence is afforded by parts or organs of an important and uniform nature occasionally varying so as to acquire, in some degree, the character of the same part or organ in an allied species. I have collected a long list of such cases; but here, as before, I lie under a great disadvantage in not being able to give them. I can only repeat that such cases certainly do occur, and seem to me very remarkable.
6.  Although natural selection can act only through and for the good of each being, yet characters and structures, which we are apt to consider as of very trifling importance, may thus be acted on. When we see leaf-eating insects green, and bark-feeders mottled-grey; the alpine ptarmigan white in winter, the red-grouse the colour of heather, and the black-grouse that of peaty earth, we must believe that these tints are of service to these birds and insects in preserving them from danger. Grouse, if not destroyed at some period of their lives, would increase in countless numbers; they are known to suffer largely from birds of prey; and hawks are guided by eyesight to their prey, so much so, that on parts of the Continent persons are warned not to keep white pigeons, as being the most liable to destruction. Hence I can see no reason to doubt that natural selection might be most effective in giving the proper colour to each kind of grouse, and in keeping that colour, when once acquired, true and constant. Nor ought we to think that the occasional destruction of an animal of any particular colour would produce little effect: we should remember how essential it is in a flock of white sheep to destroy every lamb with the faintest trace of black. In plants the down on the fruit and the colour of the flesh are considered by botanists as characters of the most trifling importance: yet we hear from an excellent horticulturist, Downing, that in the United States smooth-skinned fruits suffer far more from a beetle, a curculio, than those with down; that purple plums suffer far more from a certain disease than yellow plums; whereas another disease attacks yellow-fleshed peaches far more than those with other coloured flesh. If, with all the aids of art, these slight differences make a great difference in cultivating the several varieties, assuredly, in a state of nature, where the trees would have to struggle with other trees and with a host of enemies, such differences would effectually settle which variety, whether a smooth or downy, a yellow or purple fleshed fruit, should succeed.In looking at many small points of difference between species, which, as far as our ignorance permits us to judge, seem to be quite unimportant, we must not forget that climate, food, &c., probably produce some slight and direct effect. It is, however, far more necessary to bear in mind that there are many unknown laws of correlation of growth, which, when one part of the organisation is modified through variation, and the modifications are accumulated by natural selection for the good of the being, will cause other modifications, often of the most unexpected nature.

推荐功能

1.  Any variation which is not inherited is unimportant for us. But the number and diversity of inheritable deviations of structure, both those of slight and those of considerable physiological importance, is endless. Dr Prosper Lucas's treatise, in two large volumes, is the fullest and the best on this subject. No breeder doubts how strong is the tendency to inheritance: like produces like is his fundamental belief: doubts have been thrown on this principle by theoretical writers alone. When a deviation appears not unfrequently, and we see it in the father and child, we cannot tell whether it may not be due to the same original cause acting on both; but when amongst individuals, apparently exposed to the same conditions, any very rare deviation, due to some extraordinary combination of circumstances, appears in the parent say, once amongst several million individuals and it reappears in the child, the mere doctrine of chances almost compels us to attribute its reappearance to inheritance. Every one must have heard of cases of albinism, prickly skin, hairy bodies, &c. appearing in several members of the same family. If strange and rare deviations of structure are truly inherited, less strange and commoner deviations may be freely admitted to be inheritable. Perhaps the correct way of viewing the whole subject, would be, to look at the inheritance of every character whatever as the rule, and non-inheritance as the anomaly.The laws governing inheritance are quite unknown; no one can say why the same peculiarity in different individuals of the same species, and in individuals of different species, is sometimes inherited and sometimes not so; why the child often reverts in certain characters to its grandfather or grandmother or other much more remote ancestor; why a peculiarity is often transmitted from one sex to both sexes or to one sex alone, more commonly but not exclusively to the like sex. It is a fact of some little importance to us, that peculiarities appearing in the males of our domestic breeds are often transmitted either exclusively, or in a much greater degree, to males alone. A much more important rule, which I think may be trusted, is that, at whatever period of life a peculiarity first appears, it tends to appear in the offspring at a corresponding age, though sometimes earlier. In many cases this could not be otherwise: thus the inherited peculiarities in the horns of cattle could appear only in the offspring when nearly mature; peculiarities in the silkworm are known to appear at the corresponding caterpillar or cocoon stage. But hereditary diseases and some other facts make me believe that the rule has a wider extension, and that when there is no apparent reason why a peculiarity should appear at any particular age, yet that it does tend to appear in the offspring at the same period at which it first appeared in the parent. I believe this rule to be of the highest importance in explaining the laws of embryology. These remarks are of course confined to the first appearance of the peculiarity, and not to its primary cause, which may have acted on the ovules or male element; in nearly the same manner as in the crossed offspring from a short-horned cow by a long-horned bull, the greater length of horn, though appearing late in life, is clearly due to the male element.Having alluded to the subject of reversion, I may here refer to a statement often made by naturalists namely, that our domestic varieties, when run wild, gradually but certainly revert in character to their aboriginal stocks. Hence it has been argued that no deductions can be drawn from domestic races to species in a state of nature. I have in vain endeavoured to discover on what decisive facts the above statement has so often and so boldly been made. There would be great difficulty in proving its truth: we may safely conclude that very many of the most strongly-marked domestic varieties could not possibly live in a wild state. In many cases we do not know what the aboriginal stock was, and so could not tell whether or not nearly perfect reversion had ensued. It would be quite necessary, in order to prevent the effects of intercrossing, that only a single variety should be turned loose in its new home. Nevertheless, as our varieties certainly do occasionally revert in some of their characters to ancestral forms, it seems to me not improbable, that if we could succeed in naturalising, or were to cultivate, during many generations, the several races, for instance, of the cabbage, in very poor soil (in which case, however, some effect would have to be attributed to the direct action of the poor soil), that they would to a large extent, or even wholly, revert to the wild aboriginal stock. Whether or not the experiment would succeed, is not of great importance for our line of argument; for by the experiment itself the conditions of life are changed. If it could be shown that our domestic varieties manifested a strong tendency to reversion, that is, to lose their acquired characters, whilst kept under unchanged conditions, and whilst kept in a considerable body, so that free intercrossing might check, by blending together, any slight deviations of structure, in such case, I grant that we could deduce nothing from domestic varieties in regard to species. But there is not a shadow of evidence in favour of this view: to assert that we could not breed our cart and race-horses, long and short-horned cattle and poultry of various breeds, and esculent vegetables, for an almost infinite number of generations, would be opposed to all experience. I may add, that when under nature the conditions of life do change, variations and reversions of character probably do occur; but natural selection, as will hereafter be explained, will determine how far the new characters thus arising shall be preserved.When we look to the hereditary varieties or races of our domestic animals and plants, and compare them with species closely allied together, we generally perceive in each domestic race, as already remarked, less uniformity of character than in true species. Domestic races of the same species, also, often have a somewhat monstrous character; by which I mean, that, although differing from each other, and from the other species of the same genus, in several trifling respects, they often differ in an extreme degree in some one part, both when compared one with another, and more especially when compared with all the species in nature to which they are nearest allied. With these exceptions (and with that of the perfect fertility of varieties when crossed, a subject hereafter to be discussed), domestic races of the same species differ from each other in the same manner as, only in most cases in a lesser degree than, do closely-allied species of the same genus in a state of nature. I think this must be admitted, when we find that there are hardly any domestic races, either amongst animals or plants, which have not been ranked by some competent judges as mere varieties, and by other competent judges as the descendants of aboriginally distinct species. If any marked distinction existed between domestic races and species, this source of doubt could not so perpetually recur. It has often been stated that domestic races do not differ from each other in characters of generic value. I think it could be shown that this statement is hardly correct; but naturalists differ most widely in determining what characters are of generic value; all such valuations being at present empirical. Moreover, on the view of the origin of genera which I shall presently give, we have no right to expect often to meet with generic differences in our domesticated productions.When we attempt to estimate the amount of structural difference between the domestic races of the same species, we are soon involved in doubt, from not knowing whether they have descended from one or several parent-species. This point, if could be cleared up, would be interesting; if, for instance, it could be shown that the greyhound, bloodhound, terrier, spaniel, and bull-dog, which we all know propagate their kind so truly, were the offspring of any single species, then such facts would have great weight in making us doubt about the immutability of the many very closely allied and natural species for instance, of the many foxes inhabiting different quarters of the world. I do not believe, as we shall presently see, that all our dogs have descended from any one wild species; but, in the case of some other domestic races, there is presumptive, or even strong, evidence in favour of this view.
2.  Chapter 3 - Struggle for Existence
3.  Intercrossing plays a very important part in nature in keeping the individuals of the same species, or of the same variety, true and uniform in character. It will obviously thus act far more efficiently with those animals which unite for each birth; but I have already attempted to show that we have reason to believe that occasional intercrosses take place with all animals and with all plants. Even if these take place only at long intervals, I am convinced that the young thus produced will gain so much in vigour and fertility over the offspring from long-continued self-fertilisation, that they will have a better chance of surviving and propagating their kind; and thus, in the long run, the influence of intercrosses, even at rare intervals, will be great. If there exist organic beings which never intercross, uniformity of character can be retained amongst them, as long as their conditions of life remain the same, only through the principle of inheritance, and through natural selection destroying any which depart from the proper type; but if their conditions of life change and they undergo modification, uniformity of character can be given to their modified offspring, solely by natural selection preserving the same favourable variations.Isolation, also, is an important element in the process of natural selection. In a confined or isolated area, if not very large, the organic and inorganic conditions of life will generally be in a great degree uniform; so that natural selection will tend to modify all the individuals of a varying species throughout the area in the same manner in relation to the same conditions. Intercrosses, also, with the individuals of the same species, which otherwise would have inhabited the surrounding and differently circumstanced districts, will be prevented. But isolation probably acts more efficiently in checking the immigration of better adapted organisms, after any physical change, such as of climate or elevation of the land, &c.; and thus new places in the natural economy of the country are left open for the old inhabitants to struggle for, and become adapted to, through modifications in their structure and constitution. Lastly, isolation, by checking immigration and consequently competition, will give time for any new variety to be slowly improved; and this may sometimes be of importance in the production of new species. If, however, an isolated area be very small, either from being surrounded by barriers, or from having very peculiar physical conditions, the total number of the individuals supported on it will necessarily be very small; and fewness of individuals will greatly retard the production of new species through natural selection, by decreasing the chance of the appearance of favourable variations.If we turn to nature to test the truth of these remarks, and look at any small isolated area, such as an oceanic island, although the total number of the species inhabiting it, will be found to be small, as we shall see in our chapter on geographical distribution; yet of these species a very large proportion are endemic, that is, have been produced there, and nowhere else. Hence an oceanic island at first sight seems to have been highly favourable for the production of new species. But we may thus greatly deceive ourselves, for to ascertain whether a small isolated area, or a large open area like a continent, has been most favourable for the production of new organic forms, we ought to make the comparison within equal times; and this we are incapable of doing.
4.  Hence, also, we can see that when a plant or animal is placed in a new country amongst new competitors, though the climate may be exactly the same as in its former home, yet the conditions of its life will generally be changed in an essential manner. If we wished to increase its average numbers in its new home, we should have to modify it in a different way to what we should have done in its native country; for we should have to give it some advantage over a different set of competitors or enemies.
5.   Previous Chapter
6.  When a young naturalist commences the study of a group of organisms quite unknown to him, he is at first much perplexed to determine what differences to consider as specific, and what as varieties; for he knows nothing of the amount and kind of variation to which the group is subject; and this shows, at least, how very generally there is some variation. But if he confine his attention to one class within one country, he will soon make up his mind how to rank most of the doubtful forms. His general tendency will be to make many species, for he will become impressed, just like the pigeon or poultry-fancier before alluded to, with the amount of difference in the forms which he is continually studying; and he has little general knowledge of analogical variation in other groups and in other countries, by which to correct his first impressions. As he extends the range of his observations, he will meet with more cases of difficulty; for he will encounter a greater number of closely-allied forms. But if his observations be widely extended, he will in the end generally be enabled to make up his own mind which to call varieties and which species; but he will succeed in this at the expense of admitting much variation, and the truth of this admission will often be disputed by other naturalists. When, moreover, he comes to study allied forms brought from countries not now continuous, in which case he can hardly hope to find the intermediate links between his doubtful forms, he will have to trust almost entirely to analogy, and his difficulties will rise to a climax.Certainly no clear line of demarcation has as yet been drawn between species and sub-species that is, the forms which in the opinion of some naturalists come very near to, but do not quite arrive at the rank of species; or, again, between sub-species and well-marked varieties, or between lesser varieties and individual differences. These differences blend into each other in an insensible series; and a series impresses the mind with the idea of an actual passage.

应用

1.  In regard to plants, there is another means of observing the accumulated effects of selection namely, by comparing the diversity of flowers in the different varieties of the same species in the flower-garden; the diversity of leaves, pods, or tubers, or whatever part is valued, in the kitchen-garden, in comparison with the flowers of the same varieties; and the diversity of fruit of the same species in the orchard, in comparison with the leaves and flowers of the same set of varieties. See how different the leaves of the cabbage are, and how extremely alike the flowers; how unlike the flowers of the heartsease are, and how alike the leaves; how much the fruit of the different kinds of gooseberries differ in size, colour, shape, and hairiness, and yet the flowers present very slight differences. It is not that the varieties which differ largely in some one point do not differ at all in other points; this is hardly ever, perhaps never, the case. The laws of correlation of growth, the importance of which should never be overlooked, will ensure some differences; but, as a general rule, I cannot doubt that the continued selection of slight variations, either in the leaves, the flowers, or the fruit, will produce races differing from each other chiefly in these characters.It may be objected that the principle of selection has been reduced to methodical practice for scarcely more than three-quarters of a century; it has certainly been more attended to of late years, and many treatises have been published on the subject; and the result, I may add, has been, in a corresponding degree, rapid and important. But it is very far from true that the principle is a modern discovery. I could give several references to the full acknowledgement of the importance of the principle in works of high antiquity. In rude and barbarous periods of English history choice animals were often imported, and laws were passed to prevent their exportation: the destruction of horses under a certain size was ordered, and this may be compared to the 'roguing' of plants by nurserymen. The principle of selection I find distinctly given in an ancient Chinese encyclopaedia. Explicit rules are laid down by some of the Roman classical writers. From passages in Genesis, it is clear that the colour of domestic animals was at that early period attended to. Savages now sometimes cross their dogs with wild canine animals, to improve the breed, and they formerly did so, as is attested by passages in Pliny. The savages in South Africa match their draught cattle by colour, as do some of the Esquimaux their teams of dogs. Livingstone shows how much good domestic breeds are valued by the negroes of the interior of Africa who have not associated with Europeans. Some of these facts do not show actual selection, but they show that the breeding of domestic animals was carefully attended to in ancient times, and is now attended to by the lowest savages. It would, indeed, have been a strange fact, had attention not been paid to breeding, for the inheritance of good and bad qualities is so obvious.At the present time, eminent breeders try by methodical selection, with a distinct object in view, to make a new strain or sub-breed, superior to anything existing in the country. But, for our purpose, a kind of Selection, which may be called Unconscious, and which results from every one trying to possess and breed from the best individual animals, is more important. Thus, a man who intends keeping pointers naturally tries to get as good dogs as he can, and afterwards breeds from his own best dogs, but he has no wish or expectation of permanently altering the breed. Nevertheless I cannot doubt that this process, continued during centuries, would improve and modify any breed, in the same way as Bakewell, Collins, &c., by this very same process, only carried on more methodically, did greatly modify, even during their own lifetimes, the forms and qualities of their cattle. Slow and insensible changes of this kind could never be recognised unless actual measurements or careful drawings of the breeds in question had been made long ago, which might serve for comparison. In some cases, however, unchanged or but little changed individuals of the same breed may be found in less civilised districts, where the breed has been less improved. There is reason to believe that King Charles's spaniel has been unconsciously modified to a large extent since the time of that monarch. Some highly competent authorities are convinced that the setter is directly derived from the spaniel, and has probably been slowly altered from it. It is known that the English pointer has been greatly changed within the last century, and in this case the change has, it is believed, been chiefly effected by crosses with the fox-hound; but what concerns us is, that the change has been effected unconsciously and gradually, and yet so effectually, that, though the old Spanish pointer certainly came from Spain, Mr Barrow has not seen, as I am informed by him, any native dog in Spain like our pointer.By a similar process of selection, and by careful training, the whole body of English racehorses have come to surpass in fleetness and size the parent Arab stock, so that the latter, by the regulations for the Goodwood Races, are favoured in the weights they carry. Lord Spencer and others have shown how the cattle of England have increased in weight and in early maturity, compared with the stock formerly kept in this country. By comparing the accounts given in old pigeon treatises of carriers and tumblers with these breeds as now existing in Britain, India, and Persia, we can, I think, clearly trace the stages through which they have insensibly passed, and come to differ so greatly from the rock-pigeon.
2.  In favour of this view, I may add, firstly, that C. livia, or the rock-pigeon, has been found capable of domestication in Europe and in India; and that it agrees in habits and in a great number of points of structure with all the domestic breeds. Secondly, although an English carrier or short-faced tumbler differs immensely in certain characters from the rock-pigeon, yet by comparing the several sub-breeds of these breeds, more especially those brought from distant countries, we can make an almost perfect series between the extremes of structure. Thirdly, those characters which are mainly distinctive of each breed, for instance the wattle and length of beak of the carrier, the shortness of that of the tumbler, and the number of tail-feathers in the fantail, are in each breed eminently variable; and the explanation of this fact will be obvious when we come to treat of selection. Fourthly, pigeons have been watched, and tended with the utmost care, and loved by many people. They have been domesticated for thousands of years in several quarters of the world; the earliest known record of pigeons is in the fifth Aegyptian dynasty, about 3000 B.C., as was pointed out to me by Professor Lepsius; but Mr Birch informs me that pigeons are given in a bill of fare in the previous dynasty. In the time of the Romans, as we hear from Pliny, immense prices were given for pigeons; 'nay, they are come to this pass, that they can reckon up their pedigree and race.' Pigeons were much valued by Akber Khan in India, about the year 1600; never less than 20,000 pigeons were taken with the court. 'The monarchs of Iran and Turan sent him some very rare birds;' and, continues the courtly historian, 'His Majesty by crossing the breeds, which method was never practised before, has improved them astonishingly.' About this same period the Dutch were as eager about pigeons as were the old Romans. The paramount importance of these considerations in explaining the immense amount of variation which pigeons have undergone, will be obvious when we treat of Selection. We shall then, also, see how it is that the breeds so often have a somewhat monstrous character. It is also a most favourable circumstance for the production of distinct breeds, that male and female pigeons can be easily mated for life; and thus different breeds can be kept together in the same aviary.I have discussed the probable origin of domestic pigeons at some, yet quite insufficient, length; because when I first kept pigeons and watched the several kinds, knowing well how true they bred, I felt fully as much difficulty in believing that they could ever have descended from a common parent, as any naturalist could in coming to a similar conclusion in regard to the many species of finches, or other large groups of birds, in nature. One circumstance has struck me much; namely, that all the breeders of the various domestic animals and the cultivators of plants, with whom I have ever conversed, or whose treatises I have read, are firmly convinced that the several breeds to which each has attended, are descended from so many aboriginally distinct species. Ask, as I have asked, a celebrated raiser of Hereford cattle, whether his cattle might not have descended from long horns, and he will laugh you to scorn. I have never met a pigeon, or poultry, or duck, or rabbit fancier, who was not fully convinced that each main breed was descended from a distinct species. Van Mons, in his treatise on pears and apples, shows how utterly he disbelieves that the several sorts, for instance a Ribston-pippin or Codlin-apple, could ever have proceeded from the seeds of the same tree. Innumerable other examples could be given. The explanation, I think, is simple: from long-continued study they are strongly impressed with the differences between the several races; and though they well know that each race varies slightly, for they win their prizes by selecting such slight differences, yet they ignore all general arguments, and refuse to sum up in their minds slight differences accumulated during many successive generations. May not those naturalists who, knowing far less of the laws of inheritance than does the breeder, and knowing no more than he does of the intermediate links in the long lines of descent, yet admit that many of our domestic races have descended from the same parents may they not learn a lesson of caution, when they deride the idea of species in a state of nature being lineal descendants of other species?Selection
3.  But we may go further than this. The original species of our genus were supposed to resemble each other in unequal degrees, as is so generally the case in nature; species (A) being more nearly related to B, C, and D, than to the other species; and species (I) more to G, H, K, L, than to the others. These two species (A) and (I), were also supposed to be very common and widely diffused species, so that they must originally have had some advantage over most of the other species of the genus. Their modified descendants, fourteen in number at the fourteen-thousandth generation, will probably have inherited some of the same advantages: they have also been modified and improved in a diversified manner at each stage of descent, so as to have become adapted to many related places in the natural economy of their country. It seems, therefore, to me extremely probable that they will have taken the places of, and thus exterminated, not only their parents (A) and (I), but likewise some of the original species which were most nearly related to their parents. Hence very few of the original species will have transmitted offspring to the fourteen-thousandth generation. We may suppose that only one (F), of the two species which were least closely related to the other nine original species, has transmitted descendants to this late stage of descent.The new species in our diagram descended from the original eleven species, will now be fifteen in number. Owing to the divergent tendency of natural selection, the extreme amount of difference in character between species a14 and z14 will be much greater than that between the most different of the original eleven species. The new species, moreover, will be allied to each other in a widely different manner. Of the eight descendants from (A) the three marked a14, q14, p14, will be nearly related from having recently branched off from a14; b14 and f14, from having diverged at an earlier period from a5, will be in some degree distinct from the three first-named species; and lastly, o14, e14, and m14, will be nearly related one to the other, but from having diverged at the first commencement of the process of modification, will be widely different from the other five species, and may constitute a sub-genus or even a distinct genus. The six descendants from (I) will form two sub-genera or even genera. But as the original species (I) differed largely from (A), standing nearly at the extreme points of the original genus, the six descendants from (I) will, owing to inheritance, differ considerably from the eight descendants from (A); the two groups, moreover, are supposed to have gone on diverging in different directions. The intermediate species, also (and this is a very important consideration), which connected the original species (A) and (I), have all become, excepting (F), extinct, and have left no descendants. Hence the six new species descended from (I), and the eight descended from (A), will have to be ranked as very distinct genera, or even as distinct sub-families.Thus it is, as I believe, that two or more genera are produced by descent, with modification, from two or more species of the same genus. And the two or more parent-species are supposed to have descended from some one species of an earlier genus. In our diagram, this is indicated by the broken lines, beneath the capital letters, converging in sub-branches downwards towards a single point; this point representing a single species, the supposed single parent of our several new sub-genera and genera.
4、  We can clearly see this in the case of animals with simple habits. Take the case of a carnivorous quadruped, of which the number that can be supported in any country has long ago arrived at its full average. If its natural powers of increase be allowed to act, it can succeed in increasing (the country not undergoing any change in its conditions) only by its varying descendants seizing on places at present occupied by other animals: some of them, for instance, being enabled to feed on new kinds of prey, either dead or alive; some inhabiting new stations, climbing trees, frequenting water, and some perhaps becoming less carnivorous. The more diversified in habits and structure the descendants of our carnivorous animal became, the more places they would be enabled to occupy. What applies to one animal will apply throughout all time to all animals that is, if they vary for otherwise natural selection can do nothing. So it will be with plants. It has been experimentally proved, that if a plot of ground be sown with several distinct genera of grasses, a greater number of plants and a greater weight of dry herbage can thus be raised. The same has been found to hold good when first one variety and then several mixed varieties of wheat have been sown on equal spaces of ground. Hence, if any one species of grass were to go on varying, and those varieties were continually selected which differed from each other in at all the same manner as distinct species and genera of grasses differ from each other, a greater number of individual plants of this species of grass, including its modified descendants, would succeed in living on the same piece of ground. And we well know that each species and each variety of grass is annually sowing almost countless seeds; and thus, as it may be said, is striving its utmost to increase its numbers. Consequently, I cannot doubt that in the course of many thousands of generations, the most distinct varieties of any one species of grass would always have the best chance of succeeding and of increasing in numbers, and thus of supplanting the less distinct varieties; and varieties, when rendered very distinct from each other, take the rank of species.The truth of the principle, that the greatest amount of life can be supported by great diversification of structure, is seen under many natural circumstances. In an extremely small area, especially if freely open to immigration, and where the contest between individual and individual must be severe, we always find great diversity in its inhabitants. For instance, I found that a piece of turf, three feet by four in size, which had been exposed for many years to exactly the same conditions, supported twenty species of plants, and these belonged to eighteen genera and to eight orders, which shows how much these plants differed from each other. So it is with the plants and insects on small and uniform islets; and so in small ponds of fresh water. Farmers find that they can raise most food by a rotation of plants belonging to the most different orders: nature follows what may be called a simultaneous rotation. Most of the animals and plants which live close round any small piece of ground, could live on it (supposing it not to be in any way peculiar in its nature), and may be said to be striving to the utmost to live there; but, it is seen, that where they come into the closest competition with each other, the advantages of diversification of structure, with the accompanying differences of habit and constitution, determine that the inhabitants, which thus jostle each other most closely, shall, as a general rule, belong to what we call different genera and orders.The same principle is seen in the naturalisation of plants through man's agency in foreign lands. It might have been expected that the plants which have succeeded in becoming naturalised in any land would generally have been closely allied to the indigenes; for these are commonly looked at as specially created and adapted for their own country. It might, also, perhaps have been expected that naturalised plants would have belonged to a few groups more especially adapted to certain stations in their new homes. But the case is very different; and Alph. De Candolle has well remarked in his great and admirable work, that floras gain by naturalisation, proportionally with the number of the native genera and species, far more in new genera than in new species. To give a single instance: in the last edition of Dr Asa Gray's 'Manual of the Flora of the Northern United States,' 260 naturalised plants are enumerated, and these belong to 162 genera. We thus see that these naturalised plants are of a highly diversified nature. They differ, moreover, to a large extent from the indigenes, for out of the 162 genera, no less than 100 genera are not there indigenous, and thus a large proportional addition is made to the genera of these States.By considering the nature of the plants or animals which have struggled successfully with the indigenes of any country, and have there become naturalised, we can gain some crude idea in what manner some of the natives would have had to be modified, in order to have gained an advantage over the other natives; and we may, I think, at least safely infer that diversification of structure, amounting to new generic differences, would have been profitable to them.
5、  The advantage of diversification in the inhabitants of the same region is, in fact, the same as that of the physiological division of labour in the organs of the same individual body a subject so well elucidated by Milne Edwards. No physiologist doubts that a stomach by being adapted to digest vegetable matter alone, or flesh alone, draws most nutriment from these substances. So in the general economy of any land, the more widely and perfectly the animals and plants are diversified for different habits of life, so will a greater number of individuals be capable of there supporting themselves. A set of animals, with their organisation but little diversified, could hardly compete with a set more perfectly diversified in structure. It may be doubted, for instance, whether the Australian marsupials, which are divided into groups differing but little from each other, and feebly representing, as Mr Waterhouse and others have remarked, our carnivorous, ruminant, and rodent mammals, could successfully compete with these well-pronounced orders. In the Australian mammals, we see the process of diversification in an early and incomplete stage of development.After the foregoing discussion, which ought to have been much amplified, we may, I think, assume that the modified descendants of any one species will succeed by so much the better as they become more diversified in structure, and are thus enabled to encroach on places occupied by other beings. Now let us see how this principle of great benefit being derived from divergence of character, combined with the principles of natural selection and of extinction, will tend to act.

旧版特色

!

网友评论(GhzKvE9a20008))

  • 何建春 08-12

      As we see that those variations which under domestication appear at any particular period of life, tend to reappear in the offspring at the same period; for instance, in the seeds of the many varieties of our culinary and agricultural plants; in the caterpillar and cocoon stages of the varieties of the silkworm; in the eggs of poultry, and in the colour of the down of their chickens; in the horns of our sheep and cattle when nearly adult; so in a state of nature, natural selection will be enabled to act on and modify organic beings at any age, by the accumulation of profitable variations at that age, and by their inheritance at a corresponding age. If it profit a plant to have its seeds more and more widely disseminated by the wind, I can see no greater difficulty in this being effected through natural selection, than in the cotton-planter increasing and improving by selection the down in the pods on his cotton-trees. Natural selection may modify and adapt the larva of an insect to a score of contingencies, wholly different from those which concern the mature insect. These modifications will no doubt affect, through the laws of correlation, the structure of the adult; and probably in the case of those insects which live only for a few hours, and which never feed, a large part of their structure is merely the correlated result of successive changes in the structure of their larvae. So, conversely, modifications in the adult will probably often affect the structure of the larva; but in all cases natural selection will ensure that modifications consequent on other modifications at a different period of life, shall not be in the least degree injurious: for if they became so, they would cause the extinction of the species.Natural selection will modify the structure of the young in relation to the parent, and of the parent in relation to the young. In social animals it will adapt the structure of each individual for the benefit of the community; if each in consequence profits by the selected change. What natural selection cannot do, is to modify the structure of one species, without giving it any advantage, for the good of another species; and though statements to this effect may be found in works of natural history, I cannot find one case which will bear investigation. A structure used only once in an animal's whole life, if of high importance to it, might be modified to any extent by natural selection; for instance, the great jaws possessed by certain insects, and used exclusively for opening the cocoon or the hard tip to the beak of nestling birds, used for breaking the egg. It has been asserted, that of the best short-beaked tumbler-pigeons more perish in the egg than are able to get out of it; so that fanciers assist in the act of hatching. Now, if nature had to make the beak of a full-grown pigeon very short for the bird's own advantage, the process of modification would be very slow, and there would be simultaneously the most rigorous selection of the young birds within the egg, which had the most powerful and hardest beaks, for all with weak beaks would inevitably perish: or, more delicate and more easily broken shells might be selected, the thickness of the shell being known to vary like every other structure.Sexual Selection

  • 刘锟 08-12

      Several years ago I was much struck with a remark, nearly to the above effect, published by Mr Waterhouse. I infer also from an observation made by Professor Owen, with respect to the length of the arms of the ourang-outang, that he has come to a nearly similar conclusion. It is hopeless to attempt to convince any one of the truth of this proposition without giving the long array of facts which I have collected, and which cannot possibly be here introduced. I can only state my conviction that it is a rule of high generality. I am aware of several causes of error, but I hope that I have made due allowance for them. It should be understood that the rule by no means applies to any part, however unusually developed, unless it be unusually developed in comparison with the same part in closely allied species. Thus, the bat's wing is a most abnormal structure in the class mammalia; but the rule would not here apply, because there is a whole group of bats having wings; it would apply only if some one species of bat had its wings developed in some remarkable manner in comparison with the other species of the same genus. The rule applies very strongly in the case of secondary sexual characters, when displayed in any unusual manner. The term, secondary sexual characters, used by Hunter, applies to characters which are attached to one sex, but are not directly connected with the act of reproduction. The rule applies to males and females; but as females more rarely offer remarkable secondary sexual characters, it applies more rarely to them. The rule being so plainly applicable in the case of secondary sexual characters, may be due to the great variability of these characters, whether or not displayed in any unusual manner of which fact I think there can be little doubt. But that our rule is not confined to secondary sexual characters is clearly shown in the case of hermaphrodite cirripedes; and I may here add, that I particularly attended to Mr. Waterhouse's remark, whilst investigating this Order, and I am fully convinced that the rule almost invariably holds good with cirripedes. I shall, in my future work, give a list of the more remarkable cases; I will here only briefly give one, as it illustrates the rule in its largest application. The opercular valves of sessile cirripedes (rock barnacles) are, in every sense of the word, very important structures, and they differ extremely little even in different genera; but in the several species of one genus, Pyrgoma, these valves present a marvellous amount of diversification: the homologous valves in the different species being sometimes wholly unlike in shape; and the amount of variation in the individuals of several of the species is so great, that it is no exaggeration to state that the varieties differ more from each other in the characters of these important valves than do other species of distinct genera.As birds within the same country vary in a remarkably small degree, I have particularly attended to them, and the rule seems to me certainly to hold good in this class. I cannot make out that it applies to plants, and this would seriously have shaken my belief in its truth, had not the great variability in plants made it particularly difficult to compare their relative degrees of variability.

  • 马沙尔 08-12

       From the facts alluded to in the first chapter, I think there can be little doubt that use in our domestic animals strengthens and enlarges certain parts, and disuse diminishes them; and that such modifications are inherited. Under free nature, we can have no standard of comparison, by which to judge of the effects of long-continued use or disuse, for we know not the parent-forms; but many animals have structures which can be explained by the effects of disuse. As Professor Owen has remarked, there is no greater anomaly in nature than a bird that cannot fly; yet there are several in this state. The logger-headed duck of South America can only flap along the surface of the water, and has its wings in nearly the same condition as the domestic Aylesbury duck. As the larger ground-feeding birds seldom take flight except to escape danger, I believe that the nearly wingless condition of several birds, which now inhabit or have lately inhabited several oceanic islands, tenanted by no beast of prey, has been caused by disuse. The ostrich indeed inhabits continents and is exposed to danger from which it cannot escape by flight, but by kicking it can defend itself from enemies, as well as any of the smaller quadrupeds. We may imagine that the early progenitor of the ostrich had habits like those of a bustard, and that as natural selection increased in successive generations the size and weight of its body, its legs were used more, and its wings less, until they became incapable of flight.Kirby has remarked (and I have observed the same fact) that the anterior tarsi, or feet, of many male dung-feeding beetles are very often broken off; he examined seventeen specimens in his own collection, and not one had even a relic left. In the Onites apelles the tarsi are so habitually lost, that the insect has been described as not having them. In some other genera they are present, but in a rudimentary condition. In the Ateuchus or sacred beetle of the Egyptians, they are totally deficient. There is not sufficient evidence to induce us to believe that mutilations are ever inherited; and I should prefer explaining the entire absence of the anterior tarsi in Ateuchus, and their rudimentary condition in some other genera, by the long-continued effects of disuse in their progenitors; for as the tarsi are almost always lost in many dung-feeding beetles, they must be lost early in life, and therefore cannot be much used by these insects.

  • 叶文勇 08-12

      Seedlings from the same fruit, and the young of the same litter, sometimes differ considerably from each other, though both the young and the parents, as Muller has remarked, have apparently been exposed to exactly the same conditions of life; and this shows how unimportant the direct effects of the conditions of life are in comparison with the laws of reproduction, and of growth, and of inheritance; for had the action of the conditions been direct, if any of the young had varied, all would probably have varied in the same manner. To judge how much, in the case of any variation, we should attribute to the direct action of heat, moisture, light, food, &c., is most difficult: my impression is, that with animals such agencies have produced very little direct effect, though apparently more in the case of plants. Under this point of view, Mr Buckman's recent experiments on plants seem extremely valuable. When all or nearly all the individuals exposed to certain conditions are affected in the same way, the change at first appears to be directly due to such conditions; but in some cases it can be shown that quite opposite conditions produce similar changes of structure. Nevertheless some slight amount of change may, I think, be attributed to the direct action of the conditions of life as, in some cases, increased size from amount of food, colour from particular kinds of food and from light, and perhaps the thickness of fur from climate.Habit also has a deciding influence, as in the period of flowering with plants when transported from one climate to another. In animals it has a more marked effect; for instance, I find in the domestic duck that the bones of the wing weigh less and the bones of the leg more, in proportion to the whole skeleton, than do the same bones in the wild-duck; and I presume that this change may be safely attributed to the domestic duck flying much less, and walking more, than its wild parent. The great and inherited development of the udders in cows and goats in countries where they are habitually milked, in comparison with the state of these organs in other countries, is another instance of the effect of use. Not a single domestic animal can be named which has not in some country drooping ears; and the view suggested by some authors, that the drooping is due to the disuse of the muscles of the ear, from the animals not being much alarmed by danger, seems probable.

  • 孙红军 08-11

    {  Chapter 4 - Natural Selection

  • 泰伦斯-琼斯 08-10

      When we see any part or organ developed in a remarkable degree or manner in any species, the fair presumption is that it is of high importance to that species; nevertheless the part in this case is eminently liable to variation. Why should this be so? On the view that each species has been independently created, with all its parts as we now see them, I can see no explanation. But on the view that groups of species have descended from other species, and have been modified through natural selection, I think we can obtain some light. In our domestic animals, if any part, or the whole animal, be neglected and no selection be applied, that part (for instance, the comb in the Dorking fowl) or the whole breed will cease to have a nearly uniform character. The breed will then be said to have degenerated. In rudimentary organs, and in those which have been but little specialized for any particular purpose, and perhaps in polymorphic groups, we see a nearly parallel natural case; for in such cases natural selection either has not or cannot come into full play, and thus the organisation is left in a fluctuating condition. But what here more especially concerns us is, that in our domestic animals those points, which at the present time are undergoing rapid change by continued selection, are also eminently liable to variation. Look at the breeds of the pigeon; see what a prodigious amount of difference there is in the beak of the different tumblers, in the beak and wattle of the different carriers, in the carriage and tail of our fantails, &c., these being the points now mainly attended to by English fanciers. Even in the sub-breeds, as in the short-faced tumbler, it is notoriously difficult to breed them nearly to perfection, and frequently individuals are born which depart widely from the standard. There may be truly said to be a constant struggle going on between, on the one hand, the tendency to reversion to a less modified state, as well as an innate tendency to further variability of all kinds, and, on the other hand, the power of steady selection to keep the breed true. In the long run selection gains the day, and we do not expect to fail so far as to breed a bird as coarse as a common tumbler from a good short-faced strain. But as long as selection is rapidly going on, there may always be expected to be much variability in the structure undergoing modification. It further deserves notice that these variable characters, produced by man's selection, sometimes become attached, from causes quite unknown to us, more to one sex than to the other, generally to the male sex, as with the wattle of carriers and the enlarged crop of pouters.Now let us turn to nature. When a part has been developed in an extraordinary manner in any one species, compared with the other species of the same genus, we may conclude that this part has undergone an extraordinary amount of modification, since the period when the species branched off from the common progenitor of the genus. This period will seldom be remote in any extreme degree, as species very rarely endure for more than one geological period. An extraordinary amount of modification implies an unusually large and long-continued amount of variability, which has continually been accumulated by natural selection for the benefit of the species. But as the variability of the extraordinarily-developed part or organ has been so great and long-continued within a period not excessively remote, we might, as a general rule, expect still to find more variability in such parts than in other parts of the organisation, which have remained for a much longer period nearly constant. And this, I am convinced, is the case. That the struggle between natural selection on the one hand, and the tendency to reversion and variability on the other hand, will in the course of time cease; and that the most abnormally developed organs may be made constant, I can see no reason to doubt. Hence when an organ, however abnormal it may be, has been transmitted in approximately the same condition to many modified descendants, as in the case of the wing of the bat, it must have existed, according to my theory, for an immense period in nearly the same state; and thus it comes to be no more variable than any other structure. It is only in those cases in which the modification has been comparatively recent and extraordinarily great that we ought to find the generative variability, as it may be called, still present in a high degree. For in this case the variability will seldom as yet have been fixed by the continued selection of the individuals varying in the required manner and degree, and by the continued rejection of those tending to revert to a former and less modified condition.The principle included in these remarks may be extended. It is notorious that specific characters are more variable than generic. To explain by a simple example what is meant. If some species in a large genus of plants had blue flowers and some had red, the colour would be only a specific character, and no one would be surprised at one of the blue species varying into red, or conversely; but if all the species had blue flowers, the colour would become a generic character, and its variation would be a more unusual circumstance. I have chosen this example because an explanation is not in this case applicable, which most naturalists would advance, namely, that specific characters are more variable than generic, because they are taken from parts of less physiological importance than those commonly used for classing genera. I believe this explanation is partly, yet only indirectly, true; I shall, however, have to return to this subject in our chapter on Classification. It would be almost superfluous to adduce evidence in support of the above statement, that specific characters are more variable than generic; but I have repeatedly noticed in works on natural history, that when an author has remarked with surprise that some important organ or part, which is generally very constant throughout large groups of species, has differed considerably in closely-allied species, that it has, also, been variable in the individuals of some of the species. And this fact shows that a character, which is generally of generic value, when it sinks in value and becomes only of specific value, often becomes variable, though its physiological importance may remain the same. Something of the same kind applies to monstrosities: at least Is. Geoffroy St. Hilaire seems to entertain no doubt, that the more an organ normally differs in the different species of the same group, the more subject it is to individual anomalies.On the ordinary view of each species having been independently created, why should that part of the structure, which differs from the same part in other independently-created species of the same genus, be more variable than those parts which are closely alike in the several species? I do not see that any explanation can be given. But on the view of species being only strongly marked and fixed varieties, we might surely expect to find them still often continuing to vary in those parts of their structure which have varied within a moderately recent period, and which have thus come to differ. Or to state the case in another manner: the points in which all the species of a genus resemble each other, and in which they differ from the species of some other genus, are called generic characters; and these characters in common I attribute to inheritance from a common progenitor, for it can rarely have happened that natural selection will have modified several species, fitted to more or less widely-different habits, in exactly the same manner: and as these so-called generic characters have been inherited from a remote period, since that period when the species first branched off from their common progenitor, and subsequently have not varied or come to differ in any degree, or only in a slight degree, it is not probable that they should vary at the present day. On the other hand, the points in which species differ from other species of the same genus, are called specific characters; and as these specific characters have varied and come to differ within the period of the branching off of the species from a common progenitor, it is probable that they should still often be in some degree variable, at least more variable than those parts of the organisation which have for a very long period remained constant.In connexion with the present subject, I will make only two other remarks. I think it will be admitted, without my entering on details, that secondary sexual characters are very variable; I think it also will be admitted that species of the same group differ from each other more widely in their secondary sexual characters, than in other parts of their organisation; compare, for instance, the amount of difference between the males of gallinaceous birds, in which secondary sexual characters are strongly displayed, with the amount of difference between their females; and the truth of this proposition will be granted. The cause of the original variability of secondary sexual characters is not manifest; but we can see why these characters should not have been rendered as constant and uniform as other parts of the organisation; for secondary sexual characters have been accumulated by sexual selection, which is less rigid in its action than ordinary selection, as it does not entail death, but only gives fewer offspring to the less favoured males. Whatever the cause may be of the variability of secondary sexual characters, as they are highly variable, sexual selection will have had a wide scope for action, and may thus readily have succeeded in giving to the species of the same group a greater amount of difference in their sexual characters, than in other parts of their structure.It is a remarkable fact, that the secondary sexual differences between the two sexes of the same species are generally displayed in the very same parts of the organisation in which the different species of the same genus differ from each other. Of this fact I will give in illustration two instances, the first which happen to stand on my list; and as the differences in these cases are of a very unusual nature, the relation can hardly be accidental. The same number of joints in the tarsi is a character generally common to very large groups of beetles, but in the Engidae, as Westwood has remarked, the number varies greatly; and the number likewise differs in the two sexes of the same species: again in fossorial hymenoptera, the manner of neuration of the wings is a character of the highest importance, because common to large groups; but in certain genera the neuration differs in the different species, and likewise in the two sexes of the same species. This relation has a clear meaning on my view of the subject: I look at all the species of the same genus as having as certainly descended from the same progenitor, as have the two sexes of any one of the species. Consequently, whatever part of the structure of the common progenitor, or of its early descendants, became variable; variations of this part would it is highly probable, be taken advantage of by natural and sexual selection, in order to fit the several species to their several places in the economy of nature, and likewise to fit the two sexes of the same species to each other, or to fit the males and females to different habits of life, or the males to struggle with other males for the possession of the females.Finally, then, I conclude that the greater variability of specific characters, or those which distinguish species from species, than of generic characters, or those which the species possess in common; that the frequent extreme variability of any part which is developed in a species in an extraordinary manner in comparison with the same part in its congeners; and the not great degree of variability in a part, however extraordinarily it may be developed, if it be common to a whole group of species; that the great variability of secondary sexual characters, and the great amount of difference in these same characters between closely allied species; that secondary sexual and ordinary specific differences are generally displayed in the same parts of the organisation, are all principles closely connected together. All being mainly due to the species of the same group having descended from a common progenitor, from whom they have inherited much in common, to parts which have recently and largely varied being more likely still to go on varying than parts which have long been inherited and have not varied, to natural selection having more or less completely, according to the lapse of time, overmastered the tendency to reversion and to further variability, to sexual selection being less rigid than ordinary selection, and to variations in the same parts having been accumulated by natural and sexual selection, and thus adapted for secondary sexual, and for ordinary specific purposes.Distinct species present analogous variations; and a variety of one species often assumes some of the characters of an allied species, or reverts to some of the characters of an early progenitor.}

  • 卓志强 08-10

      Chapter 5 - Laws of Variation

  • 崔俊德 08-10

      When a species, owing to highly favourable circumstances, increases inordinately in numbers in a small tract, epidemics at least, this seems generally to occur with our game animals often ensue: and here we have a limiting check independent of the struggle for life. But even some of these so-called epidemics appear to be due to parasitic worms, which have from some cause, possibly in part through facility of diffusion amongst the crowded animals, been disproportionably favoured: and here comes in a sort of struggle between the parasite and its prey.

  • 周耀宜 08-09

       Previous Chapter

  • 张建胜 08-07

    {  This subject will be more fully discussed in our chapter on Geology; but it must be here alluded to from being intimately connected with natural selection. Natural selection acts solely through the preservation of variations in some way advantageous, which consequently endure. But as from the high geometrical powers of increase of all organic beings, each area is already fully stocked with inhabitants, it follows that as each selected and favoured form increases in number, so will the less favoured forms decrease and become rare. Rarity, as geology tells us, is the precursor to extinction. We can, also, see that any form represented by few individuals will, during fluctuations in the seasons or in the number of its enemies, run a good chance of utter extinction. But we may go further than this; for as new forms are continually and slowly being produced, unless we believe that the number of specific forms goes on perpetually and almost indefinitely increasing, numbers inevitably must become extinct. That the number of specific forms has not indefinitely increased, geology shows us plainly; and indeed we can see reason why they should not have thus increased, for the number of places in the polity of nature is not indefinitely great, not that we have any means of knowing that any one region has as yet got its maximum of species. probably no region is as yet fully stocked, for at the Cape of Good Hope, where more species of plants are crowded together than in any other quarter of the world, some foreign plants have become naturalised, without causing, as far as we know, the extinction of any natives.Furthermore, the species which are most numerous in individuals will have the best chance of producing within any given period favourable variations. We have evidence of this, in the facts given in the second chapter, showing that it is the common species which afford the greatest number of recorded varieties, or incipient species. Hence, rare species will be less quickly modified or improved within any given period, and they will consequently be beaten in the race for life by the modified descendants of the commoner species.

  • 童书榜 08-07

      The Origin of Species

提交评论