0 快乐赚app官网下载-APP安装下载疫情之下,蛋壳公寓能免租金吗?

快乐赚app官网下载 注册最新版下载

快乐赚app官网下载 注册

快乐赚app官网下载注册

类型【址:a g 9 559⒐ v i p】1:袁静 大小:jRyAPqp574323KB 下载:7YRglAs094243次
版本:v57705 系统:Android3.8.x以上 好评:dNAxqtCx62572条
日期:2020-08-12 23:45:04
安卓
海明威

1.【址:a g 9 559⒐ v i p】1  But we have better evidence on this subject than mere theoretical calculations, namely, the numerous recorded cases of the astonishingly rapid increase of various animals in a state of nature, when circumstances have been favourable to them during two or three following seasons. Still more striking is the evidence from our domestic animals of many kinds which have run wild in several parts of the world: if the statements of the rate of increase of slow-breeding cattle and horses in South America, and latterly in Australia, had not been well authenticated, they would have been quite incredible. So it is with plants: cases could be given of introduced plants which have become common throughout whole islands in a period of less than ten years, Several of the plants now most numerous over the wide plains of La Plata, clothing square leagues of surface almost to the exclusion of all other plants, have been introduced from Europe; and there are plants which now range in India, as I hear from Dr Falconer, from Cape Comorin to the Himalaya, which have been imported from America since its discovery. In such cases, and endless instances could be given, no one supposes that the fertility of these animals or plants has been suddenly and temporarily increased in any sensible degree. The obvious explanation is that the conditions of life have been very favourable, and that there has consequently been less destruction of the old and young, and that nearly all the young have been enabled to breed. In such cases the geometrical ratio of increase, the result of which never fails to be surprising, simply explains the extraordinarily rapid increase and wide diffusion of naturalised productions in their new homes.In a state of nature almost every plant produces seed, and amongst animals there are very few which do not annually pair. Hence we may confidently assert, that all plants and animals are tending to increase at a geometrical ratio, that all would most rapidly stock every station in which they could any how exist, and that the geometrical tendency to increase must be checked by destruction at some period of life. Our familiarity with the larger domestic animals tends, I think, to mislead us: we see no great destruction falling on them, and we forget that thousands are annually slaughtered for food, and that in a state of nature an equal number would have somehow to be disposed of.
2.  From these several considerations and from the many special facts which I have collected, but which I am not here able to give, I am strongly inclined to suspect that, both in the vegetable and animal kingdoms, an occasional intercross with a distinct individual is a law of nature. I am well aware that there are, on this view, many cases of difficulty, some of which I am trying to investigate. Finally then, we may conclude that in many organic beings, a cross between two individuals is an obvious necessity for each birth; in many others it occurs perhaps only at long intervals; but in none, as I suspect, can self-fertilisation go on for perpetuity.
3.  It is well known that several animals, belonging to the most different classes, which inhabit the caves of Styria and of Kentucky, are blind. In some of the crabs the foot-stalk for the eye remains, though the eye is gone; the stand for the telescope is there, though the telescope with its glasses has been lost. As it is difficult to imagine that eyes, though useless, could be in any way injurious to animals living in darkness, I attribute their loss wholly to disuse. In one of the blind animals, namely, the cave-rat, the eyes are of immense size; and Professor Silliman thought that it regained, after living some days in the light, some slight power of vision. In the same manner as in Madeira the wings of some of the insects have been enlarged, and the wings of others have been reduced by natural selection aided by use and disuse, so in the case of the cave-rat natural selection seems to have struggled with the loss of light and to have increased the size of the eyes; whereas with all the other inhabitants of the caves, disuse by itself seems to have done its work.It is difficult to imagine conditions of life more similar than deep limestone caverns under a nearly similar climate; so that on the common view of the blind animals having been separately created for the American and European caverns, close similarity in their organisation and affinities might have been expected; but, as Schi?dte and others have remarked, this is not the case, and the cave-insects of the two continents are not more closely allied than might have been anticipated from the general resemblance of the other inhabitants of North America and Europe. On my view we must suppose that American animals, having ordinary powers of vision, slowly migrated by successive generations from the outer world into the deeper and deeper recesses of the Kentucky caves, as did European animals into the caves of Europe. We have some evidence of this gradation of habit; for, as Schi?dte remarks, 'animals not far remote from ordinary forms, prepare the transition from light to darkness. Next follow those that are constructed for twilight; and, last of all, those destined for total darkness.' By the time that an animal had reached, after numberless generations, the deepest recesses, disuse will on this view have more or less perfectly obliterated its eyes, and natural selection will often have effected other changes, such as an increase in the length of the antennae or palpi, as a compensation for blindness. Notwithstanding such modifications, we might expect still to see in the cave-animals of America, affinities to the other inhabitants of that continent, and in those of Europe, to the inhabitants of the European continent. And this is the case with some of the American cave-animals, as I hear from Professor Dana; and some of the European cave-insects are very closely allied to those of the surrounding country. It would be most difficult to give any rational explanation of the affinities of the blind cave-animals to the other inhabitants of the two continents on the ordinary view of their independent creation. That several of the inhabitants of the caves of the Old and New Worlds should be closely related, we might expect from the well-known relationship of most of their other productions. Far from feeling any surprise that some of the cave-animals should be very anomalous, as Agassiz has remarked in regard to the blind fish, the Amblyopsis, and as is the case with the blind Proteus with reference to the reptiles of Europe, I am only surprised that more wrecks of ancient life have not been preserved, owing to the less severe competition to which the inhabitants of these dark abodes will probably have been exposed.Acclimatisation
4.  Although natural selection can act only through and for the good of each being, yet characters and structures, which we are apt to consider as of very trifling importance, may thus be acted on. When we see leaf-eating insects green, and bark-feeders mottled-grey; the alpine ptarmigan white in winter, the red-grouse the colour of heather, and the black-grouse that of peaty earth, we must believe that these tints are of service to these birds and insects in preserving them from danger. Grouse, if not destroyed at some period of their lives, would increase in countless numbers; they are known to suffer largely from birds of prey; and hawks are guided by eyesight to their prey, so much so, that on parts of the Continent persons are warned not to keep white pigeons, as being the most liable to destruction. Hence I can see no reason to doubt that natural selection might be most effective in giving the proper colour to each kind of grouse, and in keeping that colour, when once acquired, true and constant. Nor ought we to think that the occasional destruction of an animal of any particular colour would produce little effect: we should remember how essential it is in a flock of white sheep to destroy every lamb with the faintest trace of black. In plants the down on the fruit and the colour of the flesh are considered by botanists as characters of the most trifling importance: yet we hear from an excellent horticulturist, Downing, that in the United States smooth-skinned fruits suffer far more from a beetle, a curculio, than those with down; that purple plums suffer far more from a certain disease than yellow plums; whereas another disease attacks yellow-fleshed peaches far more than those with other coloured flesh. If, with all the aids of art, these slight differences make a great difference in cultivating the several varieties, assuredly, in a state of nature, where the trees would have to struggle with other trees and with a host of enemies, such differences would effectually settle which variety, whether a smooth or downy, a yellow or purple fleshed fruit, should succeed.In looking at many small points of difference between species, which, as far as our ignorance permits us to judge, seem to be quite unimportant, we must not forget that climate, food, &c., probably produce some slight and direct effect. It is, however, far more necessary to bear in mind that there are many unknown laws of correlation of growth, which, when one part of the organisation is modified through variation, and the modifications are accumulated by natural selection for the good of the being, will cause other modifications, often of the most unexpected nature.
5.  In the diagram, each horizontal line has hitherto been supposed to represent a thousand generations, but each may represent a million or hundred million generations, and likewise a section of the successive strata of the earth's crust including extinct remains. We shall, when we come to our chapter on Geology, have to refer again to this subject, and I think we shall then see that the diagram throws light on the affinities of extinct beings, which, though generally belonging to the same orders, or families, or genera, with those now living, yet are often, in some degree, intermediate in character between existing groups; and we can understand this fact, for the extinct species lived at very ancient epochs when the branching lines of descent had diverged less.
6.  Thirdly, can instincts be acquired and modified through natural selection? What shall we say to so marvellous an instinct as that which leads the bee to make cells, which have practically anticipated the discoveries of profound mathematicians?

计划指导

1.  But I must here remark that I do not suppose that the process ever goes on so regularly as is represented in the diagram, though in itself made somewhat irregular. I am far from thinking that the most divergent varieties will invariably prevail and multiply: a medium form may often long endure, and may or may not produce more than one modified descendant; for natural selection will always act according to the nature of the places which are either unoccupied or not perfectly occupied by other beings; and this will depend on infinitely complex relations. But as a general rule, the more diversified in structure the descendants from any one species can be rendered, the more places they will be enabled to seize on, and the more their modified progeny will be increased. In our diagram the line of succession is broken at regular intervals by small numbered letters marking the successive forms which have become sufficiently distinct to be recorded as varieties. But these breaks are imaginary, and might have been inserted anywhere, after intervals long enough to have allowed the accumulation of a considerable amount of divergent variation.As all the modified descendants from a common and widely-diffused species, belonging to a large genus, will tend to partake of the same advantages which made their parent successful in life, they will generally go on multiplying in number as well as diverging in character: this is represented in the diagram by the several divergent branches proceeding from (A). The modified offspring from the later and more highly improved branches in the lines of descent, will, it is probable, often take the place of, and so destroy, the earlier and less improved branches: this is represented in the diagram by some of the lower branches not reaching to the upper horizontal lines. In some cases I do not doubt that the process of modification will be confined to a single line of descent, and the number of the descendants will not be increased; although the amount of divergent modification may have been increased in the successive generations. This case would be represented in the diagram, if all the lines proceeding from (A) were removed, excepting that from a1 to a10 In the same way, for instance, the English race-horse and English pointer have apparently both gone on slowly diverging in character from their original stocks, without either having given off any fresh branches or races.After ten thousand generations, species (A) is supposed to have produced three forms, a10, f10, and m10, which, from having diverged in character during the successive generations, will have come to differ largely, but perhaps unequally, from each other and from their common parent. If we suppose the amount of change between each horizontal line in our diagram to be excessively small, these three forms may still be only well-marked varieties; or they may have arrived at the doubtful category of sub-species; but we have only to suppose the steps in the process of modification to be more numerous or greater in amount, to convert these three forms into well-defined species: thus the diagram illustrates the steps by which the small differences distinguishing varieties are increased into the larger differences distinguishing species. By continuing the same process for a greater number of generations (as shown in the diagram in a condensed and simplified manner), we get eight species, marked by the letters between a14 and m14, all descended from (A). Thus, as I believe, species are multiplied and genera are formed.In a large genus it is probable that more than one species would vary. In the diagram I have assumed that a second species (I) has produced, by analogous steps, after ten thousand generations, either two well-marked varieties (w10 and z10) or two species, according to the amount of change supposed to be represented between the horizontal lines. After fourteen thousand generations, six new species, marked by the letters n14 to z14, are supposed to have been produced. In each genus, the species, which are already extremely different in character, will generally tend to produce the greatest number of modified descendants; for these will have the best chance of filling new and widely different places in the polity of nature: hence in the diagram I have chosen the extreme species (A), and the nearly extreme species (I), as those which have largely varied, and have given rise to new varieties and species. The other nine species (marked by capital letters) of our original genus, may for a long period continue transmitting unaltered descendants; and this is shown in the diagram by the dotted lines not prolonged far upwards from want of space.But during the process of modification, represented in the diagram, another of our principles, namely that of extinction, will have played an important part. As in each fully stocked country natural selection necessarily acts by the selected form having some advantage in the struggle for life over other forms, there will be a constant tendency in the improved descendants of any one species to supplant and exterminate in each stage of descent their predecessors and their original parent. For it should be remembered that the competition will generally be most severe between those forms which are most nearly related to each other in habits, constitution, and structure. Hence all the intermediate forms between the earlier and later states, that is between the less and more improved state of a species, as well as the original parent-species itself, will generally tend to become extinct. So it probably will be with many whole collateral lines of descent, which will be conquered by later and improved lines of descent. If, however, the modified offspring of a species get into some distinct country, or become quickly adapted to some quite new station, in which child and parent do not come into competition, both may continue to exist.If then our diagram be assumed to represent a considerable amount of modification, species (A) and all the earlier varieties will have become extinct, having been replaced by eight new species (a14 to m14); and (I) will have been replaced by six (n14 to z14) new species.
2.  The principle, which I have designated by this term, is of high importance on my theory, and explains, as I believe, several important facts. In the first place, varieties, even strongly-marked ones, though having somewhat of the character of species as is shown by the hopeless doubts in many cases how to rank them yet certainly differ from each other far less than do good and distinct species. Nevertheless, according to my view, varieties are species in the process of formation, or are, as I have called them, incipient species. How, then, does the lesser difference between varieties become augmented into the greater difference between species? That this does habitually happen, we must infer from most of the innumerable species throughout nature presenting well-marked differences; whereas varieties, the supposed prototypes and parents of future well-marked species, present slight and ill-defined differences. Mere chance, as we may call it, might cause one variety to differ in some character from its parents, and the offspring of this variety again to differ from its parent in the very same character and in a greater degree; but this alone would never account for so habitual and large an amount of difference as that between varieties of the same species and species of the same genus.As has always been my practice, let us seek light on this head from our domestic productions. We shall here find something analogous. A fancier is struck by a pigeon having a slightly shorter beak; another fancier is struck by a pigeon having a rather longer beak; and on the acknowledged principle that 'fanciers do not and will not admire a medium standard, but like extremes,' they both go on (as has actually occurred with tumbler-pigeons) choosing and breeding from birds with longer and longer beaks, or with shorter and shorter beaks. Again, we may suppose that at an early period one man preferred swifter horses; another stronger and more bulky horses. The early differences would be very slight; in the course of time, from the continued selection of swifter horses by some breeders, and of stronger ones by others, the differences would become greater, and would be noted as forming two sub-breeds; finally, after the lapse of centuries, the sub-breeds would become converted into two well-established and distinct breeds. As the differences slowly become greater, the inferior animals with intermediate characters, being neither very swift nor very strong, will have been neglected, and will have tended to disappear. Here, then, we see in man's productions the action of what may be called the principle of divergence, causing differences, at first barely appreciable, steadily to increase, and the breeds to diverge in character both from each other and from their common parent.But how, it may be asked, can any analogous principle apply in nature? I believe it can and does apply most efficiently, from the simple circumstance that the more diversified the descendants from any one species become in structure, constitution, and habits, by so much will they be better enabled to seize on many and widely diversified places in the polity of nature, and so be enabled to increase in numbers.
3.  --------------------------------------------------------------------------------
4.  Although natural selection can act only through and for the good of each being, yet characters and structures, which we are apt to consider as of very trifling importance, may thus be acted on. When we see leaf-eating insects green, and bark-feeders mottled-grey; the alpine ptarmigan white in winter, the red-grouse the colour of heather, and the black-grouse that of peaty earth, we must believe that these tints are of service to these birds and insects in preserving them from danger. Grouse, if not destroyed at some period of their lives, would increase in countless numbers; they are known to suffer largely from birds of prey; and hawks are guided by eyesight to their prey, so much so, that on parts of the Continent persons are warned not to keep white pigeons, as being the most liable to destruction. Hence I can see no reason to doubt that natural selection might be most effective in giving the proper colour to each kind of grouse, and in keeping that colour, when once acquired, true and constant. Nor ought we to think that the occasional destruction of an animal of any particular colour would produce little effect: we should remember how essential it is in a flock of white sheep to destroy every lamb with the faintest trace of black. In plants the down on the fruit and the colour of the flesh are considered by botanists as characters of the most trifling importance: yet we hear from an excellent horticulturist, Downing, that in the United States smooth-skinned fruits suffer far more from a beetle, a curculio, than those with down; that purple plums suffer far more from a certain disease than yellow plums; whereas another disease attacks yellow-fleshed peaches far more than those with other coloured flesh. If, with all the aids of art, these slight differences make a great difference in cultivating the several varieties, assuredly, in a state of nature, where the trees would have to struggle with other trees and with a host of enemies, such differences would effectually settle which variety, whether a smooth or downy, a yellow or purple fleshed fruit, should succeed.In looking at many small points of difference between species, which, as far as our ignorance permits us to judge, seem to be quite unimportant, we must not forget that climate, food, &c., probably produce some slight and direct effect. It is, however, far more necessary to bear in mind that there are many unknown laws of correlation of growth, which, when one part of the organisation is modified through variation, and the modifications are accumulated by natural selection for the good of the being, will cause other modifications, often of the most unexpected nature.
5.  In the north-west part of India the Kattywar breed of horses is so generally striped, that, as I hear from Colonel Poole, who examined the breed for the Indian Government, a horse without stripes is not considered as purely-bred. The spine is always striped; the legs are generally barred; and the shoulder-stripe, which is sometimes double and sometimes treble, is common; the side of the face, moreover, is sometimes striped. The stripes are plainest in the foal; and sometimes quite disappear in old horses. Colonel Poole has seen both gray and bay Kattywar horses striped when first foaled. I have, also, reason to suspect, from information given me by Mr. W. W. Edwards, that with the English race-horse the spinal stripe is much commoner in the foal than in the full-grown animal. Without here entering on further details, I may state that I have collected cases of leg and shoulder stripes in horses of very different breeds, in various countries from Britain to Eastern China; and from Norway in the north to the Malay Archipelago in the south. In all parts of the world these stripes occur far oftenest in duns and mouse-duns; by the term dun a large range of colour is included, from one between brown and black to a close approach to cream-colour.I am aware that Colonel Hamilton Smith, who has written on this subject, believes that the several breeds of the horse have descended from several aboriginal species one of which, the dun, was striped; and that the above-described appearances are all due to ancient crosses with the dun stock. But I am not at all satisfied with this theory, and should be loth to apply it to breeds so distinct as the heavy Belgian cart-horse, Welch ponies, cobs, the lanky Kattywar race, &c., inhabiting the most distant parts of the world.
6.  The eyes of moles and of some burrowing rodents are rudimentary in size, and in some cases are quite covered up by skin and fur. This state of the eyes is probably due to gradual reduction from disuse, but aided perhaps by natural selection. In South America, a burrowing rodent, the tuco-tuco, or Ctenomys, is even more subterranean in its habits than the mole; and I was assured by a Spaniard, who had often caught them, that they were frequently blind; one which I kept alive was certainly in this condition, the cause, as appeared on dissection, having been inflammation of the nictitating membrane. As frequent inflammation of the eyes must be injurious to any animal, and as eyes are certainly not indispensable to animals with subterranean habits, a reduction in their size with the adhesion of the eyelids and growth of fur over them, might in such case be an advantage; and if so, natural selection would constantly aid the effects of disuse.

推荐功能

1.  When a variation is of the slightest use to a being, we cannot tell how much of it to attribute to the accumulative action of natural selection, and how much to the conditions of life. Thus, it is well known to furriers that animals of the same species have thicker and better fur the more severe the climate is under which they have lived; but who can tell how much of this difference may be due to the warmest-clad individuals having been favoured and preserved during many generations, and how much to the direct action of the severe climate? for it would appear that climate has some direct action on the hair of our domestic quadrupeds.
2.  We can clearly see this in the case of animals with simple habits. Take the case of a carnivorous quadruped, of which the number that can be supported in any country has long ago arrived at its full average. If its natural powers of increase be allowed to act, it can succeed in increasing (the country not undergoing any change in its conditions) only by its varying descendants seizing on places at present occupied by other animals: some of them, for instance, being enabled to feed on new kinds of prey, either dead or alive; some inhabiting new stations, climbing trees, frequenting water, and some perhaps becoming less carnivorous. The more diversified in habits and structure the descendants of our carnivorous animal became, the more places they would be enabled to occupy. What applies to one animal will apply throughout all time to all animals that is, if they vary for otherwise natural selection can do nothing. So it will be with plants. It has been experimentally proved, that if a plot of ground be sown with several distinct genera of grasses, a greater number of plants and a greater weight of dry herbage can thus be raised. The same has been found to hold good when first one variety and then several mixed varieties of wheat have been sown on equal spaces of ground. Hence, if any one species of grass were to go on varying, and those varieties were continually selected which differed from each other in at all the same manner as distinct species and genera of grasses differ from each other, a greater number of individual plants of this species of grass, including its modified descendants, would succeed in living on the same piece of ground. And we well know that each species and each variety of grass is annually sowing almost countless seeds; and thus, as it may be said, is striving its utmost to increase its numbers. Consequently, I cannot doubt that in the course of many thousands of generations, the most distinct varieties of any one species of grass would always have the best chance of succeeding and of increasing in numbers, and thus of supplanting the less distinct varieties; and varieties, when rendered very distinct from each other, take the rank of species.The truth of the principle, that the greatest amount of life can be supported by great diversification of structure, is seen under many natural circumstances. In an extremely small area, especially if freely open to immigration, and where the contest between individual and individual must be severe, we always find great diversity in its inhabitants. For instance, I found that a piece of turf, three feet by four in size, which had been exposed for many years to exactly the same conditions, supported twenty species of plants, and these belonged to eighteen genera and to eight orders, which shows how much these plants differed from each other. So it is with the plants and insects on small and uniform islets; and so in small ponds of fresh water. Farmers find that they can raise most food by a rotation of plants belonging to the most different orders: nature follows what may be called a simultaneous rotation. Most of the animals and plants which live close round any small piece of ground, could live on it (supposing it not to be in any way peculiar in its nature), and may be said to be striving to the utmost to live there; but, it is seen, that where they come into the closest competition with each other, the advantages of diversification of structure, with the accompanying differences of habit and constitution, determine that the inhabitants, which thus jostle each other most closely, shall, as a general rule, belong to what we call different genera and orders.The same principle is seen in the naturalisation of plants through man's agency in foreign lands. It might have been expected that the plants which have succeeded in becoming naturalised in any land would generally have been closely allied to the indigenes; for these are commonly looked at as specially created and adapted for their own country. It might, also, perhaps have been expected that naturalised plants would have belonged to a few groups more especially adapted to certain stations in their new homes. But the case is very different; and Alph. De Candolle has well remarked in his great and admirable work, that floras gain by naturalisation, proportionally with the number of the native genera and species, far more in new genera than in new species. To give a single instance: in the last edition of Dr Asa Gray's 'Manual of the Flora of the Northern United States,' 260 naturalised plants are enumerated, and these belong to 162 genera. We thus see that these naturalised plants are of a highly diversified nature. They differ, moreover, to a large extent from the indigenes, for out of the 162 genera, no less than 100 genera are not there indigenous, and thus a large proportional addition is made to the genera of these States.By considering the nature of the plants or animals which have struggled successfully with the indigenes of any country, and have there become naturalised, we can gain some crude idea in what manner some of the natives would have had to be modified, in order to have gained an advantage over the other natives; and we may, I think, at least safely infer that diversification of structure, amounting to new generic differences, would have been profitable to them.
3.  Fourthly, how can we account for species, when crossed, being sterile and producing sterile offspring, whereas, when varieties are crossed, their fertility is unimpaired?
4.  From these several considerations and from the many special facts which I have collected, but which I am not here able to give, I am strongly inclined to suspect that, both in the vegetable and animal kingdoms, an occasional intercross with a distinct individual is a law of nature. I am well aware that there are, on this view, many cases of difficulty, some of which I am trying to investigate. Finally then, we may conclude that in many organic beings, a cross between two individuals is an obvious necessity for each birth; in many others it occurs perhaps only at long intervals; but in none, as I suspect, can self-fertilisation go on for perpetuity.
5.   To test the truth of this anticipation I have arranged the plants of twelve countries, and the coleopterous insects of two districts, into two nearly equal masses, the species of the larger genera on one side, and those of the smaller genera on the other side, and it has invariably proved to be the case that a larger proportion of the species on the side of the larger genera present varieties, than on the side of the smaller genera. Moreover, the species of the large genera which present any varieties, invariably present a larger average number of varieties than do the species of the small genera. Both these results follow when another division is made, and when all the smallest genera, with from only one to four species, are absolutely excluded from the tables. These facts are of plain signification on the view that species are only strongly marked and permanent varieties; for whenever many species of the same genus have been formed, or where, if we may use the expression, the manufactory of species has been active, we ought generally to find the manufactory still in action, more especially as we have every reason to believe the process of manufacturing new species to be a slow one. And this certainly is the case, if varieties be looked at as incipient species; for my tables clearly show as a general rule that, wherever many species of a genus have been formed, the species of that genus present a number of varieties, that is of incipient species, beyond the average. It is not that all large genera are now varying much, and are thus increasing in the number of their species, or that no small genera are now varying and increasing; for if this had been so, it would have been fatal to my theory; inasmuch as geology plainly tells us that small genera have in the lapse of time often increased greatly in size; and that large genera have often come to their maxima, declined, and disappeared. All that we want to show is, that where many species of a genus have been formed, on an average many are still forming; and this holds good.There are other relations between the species of large genera and their recorded varieties which deserve notice. We have seen that there is no infallible criterion by which to distinguish species and well-marked varieties; and in those cases in which intermediate links have not been found between doubtful forms, naturalists are compelled to come to a determination by the amount of difference between them, judging by analogy whether or not the amount suffices to raise one or both to the rank of species. Hence the amount of difference is one very important criterion in settling whether two forms should be ranked as species or varieties. Now Fries has remarked in regard to plants, and Westwood in regard to insects, that in large genera the amount of difference between the species is often exceedingly small. I have endeavoured to test this numerically by averages, and, as far as my imperfect results go, they always confirm the view. I have also consulted some sagacious and most experienced observers, and, after deliberation, they concur in this view. In this respect, therefore, the species of the larger genera resemble varieties, more than do the species of the smaller genera. Or the case may be put in another way, and it may be said, that in the larger genera, in which a number of varieties or incipient species greater than the average are now manufacturing, many of the species already manufactured still to a certain extent resemble varieties, for they differ from each other by a less than usual amount of difference.Moreover, the species of the large genera are related to each other, in the same manner as the varieties of any one species are related to each other. No naturalist pretends that all the species of a genus are equally distinct from each other; they may generally be divided into sub-genera, or sections, or lesser groups. As Fries has well remarked, little groups of species are generally clustered like satellites around certain other species. And what are varieties but groups of forms, unequally related to each other, and clustered round certain forms that is, round their parent-species? Undoubtedly there is one most important point of difference between varieties and species; namely, that the amount of difference between varieties, when compared with each other or with their parent-species, is much less than that between the species of the same genus. But when we come to discuss the principle, as I call it, of Divergence of Character, we shall see how this may be explained, and how the lesser differences between varieties will tend to increase into the greater differences between species.There is one other point which seems to me worth notice. Varieties generally have much restricted ranges: this statement is indeed scarcely more than a truism, for if a variety were found to have a wider range than that of its supposed parent-species, their denominations ought to be reversed. But there is also reason to believe, that those species which are very closely allied to other species, and in so far resemble varieties, often have much restricted ranges. For instance, Mr H. C. Watson has marked for me in the well-sifted London Catalogue of plants (4th edition) 63 plants which are therein ranked as species, but which he considers as so closely allied to other species as to be of doubtful value: these 63 reputed species range on an average over 6.9 of the provinces into which Mr Watson has divided Great Britain. Now, in this same catalogue, 53 acknowledged varieties are recorded, and these range over 7.7 provinces; whereas, the species to which these varieties belong range over 14.3 provinces. So that the acknowledged varieties have very nearly the same restricted average range, as have those very closely allied forms, marked for me by Mr Watson as doubtful species, but which are almost universally ranked by British botanists as good and true species.Finally, then, varieties have the same general characters as species, for they cannot be distinguished from species, except, firstly, by the discovery of intermediate linking forms, and the occurrence of such links cannot affect the actual characters of the forms which they connect; and except, secondly, by a certain amount of difference, for two forms, if differing very little, are generally ranked as varieties, notwithstanding that intermediate linking forms have not been discovered; but the amount of difference considered necessary to give to two forms the rank of species is quite indefinite. In genera having more than the average number of species in any country, the species of these genera have more than the average number of varieties. In large genera the species are apt to be closely, but unequally, allied together, forming little clusters round certain species. Species very closely allied to other species apparently have restricted ranges. In all these several respects the species of large genera present a strong analogy with varieties. And we can clearly understand these analogies, if species have once existed as varieties, and have thus originated: whereas, these analogies are utterly inexplicable if each species has been independently created.We have, also, seen that it is the most flourishing and dominant species of the larger genera which on an average vary most; and varieties, as we shall hereafter see, tend to become converted into new and distinct species. The larger genera thus tend to become larger; and throughout nature the forms of life which are now dominant tend to become still more dominant by leaving many modified and dominant descendants. But by steps hereafter to be explained, the larger genera also tend to break up into smaller genera. And thus, the forms of life throughout the universe become divided into groups subordinate to groups.
6.  In order to make it clear how, as I believe, natural selection acts, I must beg permission to give one or two imaginary illustrations. Let us take the case of a wolf, which preys on various animals, securing some by craft, some by strength, and some by fleetness; and let us suppose that the fleetest prey, a deer for instance, had from any change in the country increased in numbers, or that other prey had decreased in numbers, during that season of the year when the wolf is hardest pressed for food. I can under such circumstances see no reason to doubt that the swiftest and slimmest wolves would have the best chance of surviving, and so be preserved or selected, provided always that they retained strength to master their prey at this or at some other period of the year, when they might be compelled to prey on other animals. I can see no more reason to doubt this, than that man can improve the fleetness of his greyhounds by careful and methodical selection, or by that unconscious selection which results from each man trying to keep the best dogs without any thought of modifying the breed.Even without any change in the proportional numbers of the animals on which our wolf preyed, a cub might be born with an innate tendency to pursue certain kinds of prey. Nor can this be thought very improbable; for we often observe great differences in the natural tendencies of our domestic animals; one cat, for instance, taking to catch rats, another mice; one cat, according to Mr. St. John, bringing home winged game, another hares or rabbits, and another hunting on marshy ground and almost nightly catching woodcocks or snipes. The tendency to catch rats rather than mice is known to be inherited. Now, if any slight innate change of habit or of structure benefited an individual wolf, it would have the best chance of surviving and of leaving offspring. Some of its young would probably inherit the same habits or structure, and by the repetition of this process, a new variety might be formed which would either supplant or coexist with the parent-form of wolf. Or, again, the wolves inhabiting a mountainous district, and those frequenting the lowlands, would naturally be forced to hunt different prey; and from the continued preservation of the individuals best fitted for the two sites, two varieties might slowly be formed. These varieties would cross and blend where they met; but to this subject of intercrossing we shall soon have to return. I may add, that, according to Mr. Pierce, there are two varieties of the wolf inhabiting the Catskill Mountains in the United States, one with a light greyhound-like form, which pursues deer, and the other more bulky, with shorter legs, which more frequently attacks the shepherd's flocks.Let us now take a more complex case. Certain plants excrete a sweet juice, apparently for the sake of eliminating something injurious from their sap: this is effected by glands at the base of the stipules in some Leguminosae, and at the back of the leaf of the common laurel. This juice, though small in quantity, is greedily sought by insects. Let us now suppose a little sweet juice or nectar to be excreted by the inner bases of the petals of a flower. In this case insects in seeking the nectar would get dusted with pollen, and would certainly often transport the pollen from one flower to the stigma of another flower. The flowers of two distinct individuals of the same species would thus get crossed; and the act of crossing, we have good reason to believe (as will hereafter be more fully alluded to), would produce very vigorous seedlings, which consequently would have the best chance of flourishing and surviving. Some of these seedlings would probably inherit the nectar-excreting power. Those in individual flowers which had the largest glands or nectaries, and which excreted most nectar, would be oftenest visited by insects, and would be oftenest crossed; and so in the long-run would gain the upper hand. Those flowers, also, which had their stamens and pistils placed, in relation to the size and habits of the particular insects which visited them, so as to favour in any degree the transportal of their pollen from flower to flower, would likewise be favoured or selected. We might have taken the case of insects visiting flowers for the sake of collecting pollen instead of nectar; and as pollen is formed for the sole object of fertilisation, its destruction appears a simple loss to the plant; yet if a little pollen were carried, at first occasionally and then habitually, by the pollen-devouring insects from flower to flower, and a cross thus effected, although nine-tenths of the pollen were destroyed, it might still be a great gain to the plant; and those individuals which produced more and more pollen, and had larger and larger anthers, would be selected.When our plant, by this process of the continued preservation or natural selection of more and more attractive flowers, had been rendered highly attractive to insects, they would, unintentionally on their part, regularly carry pollen from flower to flower; and that they can most effectually do this, I could easily show by many striking instances. I will give only one not as a very striking case, but as likewise illustrating one step in the separation of the sexes of plants, presently to be alluded to. Some holly-trees bear only male flowers, which have four stamens producing rather a small quantity of pollen, and a rudimentary pistil; other holly-trees bear only female flowers; these have a full-sized pistil, and four stamens with shrivelled anthers, in which not a grain of pollen can be detected. Having found a female tree exactly sixty yards from a male tree, I put the stigmas of twenty flowers, taken from different branches, under the microscope, and on all, without exception, there were pollen-grains, and on some a profusion of pollen. As the wind had set for several days from the female to the male tree, the pollen could not thus have been carried. The weather had been cold and boisterous, and therefore not favourable to bees, nevertheless every female flower which I examined had been effectually fertilised by the bees, accidentally dusted with pollen, having flown from tree to tree in search of nectar. But to return to our imaginary case: as soon as the plant had been rendered so highly attractive to insects that pollen was regularly carried from flower to flower, another process might commence. No naturalist doubts the advantage of what has been called the 'physiological division of labour;' hence we may believe that it would be advantageous to a plant to produce stamens alone in one flower or on one whole plant, and pistils alone in another flower or on another plant. In plants under culture and placed under new conditions of life, sometimes the male organs and sometimes the female organs become more or less impotent; now if we suppose this to occur in ever so slight a degree under nature, then as pollen is already carried regularly from flower to flower, and as a more complete separation of the sexes of our plant would be advantageous on the principle of the division of labour, individuals with this tendency more and more increased, would be continually favoured or selected, until at last a complete separation of the sexes would be effected.Let us now turn to the nectar-feeding insects in our imaginary case: we may suppose the plant of which we have been slowly increasing the nectar by continued selection, to be a common plant; and that certain insects depended in main part on its nectar for food. I could give many facts, showing how anxious bees are to save time; for instance, their habit of cutting holes and sucking the nectar at the bases of certain flowers, which they can, with a very little more trouble, enter by the mouth. Bearing such facts in mind, I can see no reason to doubt that an accidental deviation in the size and form of the body, or in the curvature and length of the proboscis, &c., far too slight to be appreciated by us, might profit a bee or other insect, so that an individual so characterised would be able to obtain its food more quickly, and so have a better chance of living and leaving descendants. Its descendants would probably inherit a tendency to a similar slight deviation of structure. The tubes of the corollas of the common red and incarnate clovers (Trifolium pratense and incarnatum) do not on a hasty glance appear to differ in length; yet the hive-bee can easily suck the nectar out of the incarnate clover, but not out of the common red clover, which is visited by humble-bees alone; so that whole fields of the red clover offer in vain an abundant supply of precious nectar to the hive-bee. Thus it might be a great advantage to the hive-bee to have a slightly longer or differently constructed proboscis. On the other hand, I have found by experiment that the fertility of clover greatly depends on bees visiting and moving parts of the corolla, so as to push the pollen on to the stigmatic surface. Hence, again, if humble-bees were to become rare in any country, it might be a great advantage to the red clover to have a shorter or more deeply divided tube to its corolla, so that the hive-bee could visit its flowers. Thus I can understand how a flower and a bee might slowly become, either simultaneously or one after the other, modified and adapted in the most perfect manner to each other, by the continued preservation of individuals presenting mutual and slightly favourable deviations of structure.I am well aware that this doctrine of natural selection, exemplified in the above imaginary instances, is open to the same objections which were at first urged against Sir Charles Lyell's noble views on 'the modern changes of the earth, as illustrative of geology;' but we now very seldom hear the action, for instance, of the coast-waves, called a trifling and insignificant cause, when applied to the excavation of gigantic valleys or to the formation of the longest lines of inland cliffs. Natural selection can act only by the preservation and accumulation of infinitesimally small inherited modifications, each profitable to the preserved being; and as modern geology has almost banished such views as the excavation of a great valley by a single diluvial wave, so will natural selection, if it be a true principle, banish the belief of the continued creation of new organic beings, or of any great and sudden modification in their structure.

应用

1.  Habit is hereditary with plants, as in the period of flowering, in the amount of rain requisite for seeds to germinate, in the time of sleep, &c., and this leads me to say a few words on acclimatisation. As it is extremely common for species of the same genus to inhabit very hot and very cold countries, and as I believe that all the species of the same genus have descended from a single parent, if this view be correct, acclimatisation must be readily effected during long-continued descent. It is notorious that each species is adapted to the climate of its own home: species from an arctic or even from a temperate region cannot endure a tropical climate, or conversely. So again, many succulent plants cannot endure a damp climate. But the degree of adaptation of species to the climates under which they live is often overrated. We may infer this from our frequent inability to predict whether or not an imported plant will endure our climate, and from the number of plants and animals brought from warmer countries which here enjoy good health. We have reason to believe that species in a state of nature are limited in their ranges by the competition of other organic beings quite as much as, or more than, by adaptation to particular climates. But whether or not the adaptation be generally very close, we have evidence, in the case of some few plants, of their becoming, to a certain extent, naturally habituated to different temperatures, or becoming acclimatised: thus the pines and rhododendrons, raised from seed collected by Dr Hooker from trees growing at different heights on the Himalaya were found in this country to possess different constitutional powers of resisting cold. Mr Thwaites informs me that he has observed similar facts in Ceylon, and analogous observations have been made by Mr H. C. Watson on European species of plants brought from the Azores to England. In regard to animals, several authentic cases could be given of species within historical times having largely extended their range from warmer to cooler latitudes, and conversely; but we do not positively know that these animals were strictly adapted to their native climate, but in all ordinary cases we assume such to be the case; nor do we know that they have subsequently become acclimatised to their new homes.As I believe that our domestic animals were originally chosen by uncivilised man because they were useful and bred readily under confinement, and not because they were subsequently found capable of far-extended transportation, I think the common and extraordinary capacity in our domestic animals of not only withstanding the most different climates but of being perfectly fertile (a far severer test) under them, may be used as an argument that a large proportion of other animals, now in a state of nature, could easily be brought to bear widely different climates. We must not, however, push the foregoing argument too far, on account of the probable origin of some of our domestic animals from several wild stocks: the blood, for instance, of a tropical and arctic wolf or wild dog may perhaps be mingled in our domestic breeds. The rat and mouse cannot be considered as domestic animals, but they have been transported by man to many parts of the world, and now have a far wider range than any other rodent, living free under the cold climate of Faroe in the north and of the Falklands in the south, and on many islands in the torrid zones. Hence I am inclined to look at adaptation to any special climate as a quality readily grafted on an innate wide flexibility of constitution, which is common to most animals. On this view, the capacity of enduring the most different climates by man himself and by his domestic animals, and such facts as that former species of the elephant and rhinoceros were capable of enduring a glacial climate, whereas the living species are now all tropical or sub-tropical in their habits, ought not to be looked at as anomalies, but merely as examples of a very common flexibility of constitution, brought, under peculiar circumstances, into play.How much of the acclimatisation of species to any peculiar climate is due to mere habit, and how much to the natural selection of varieties having different innate constitutions, and how much to means combined, is a very obscure question. That habit or custom has some influence I must believe, both from analogy, and from the incessant advice given in agricultural works, even in the ancient Encyclopaedias of China, to be very cautious in transposing animals from one district to another; for it is not likely that man should have succeeded in selecting so many breeds and sub-breeds with constitutions specially fitted for their own districts: the result must, I think, be due to habit. On the other hand, I can see no reason to doubt that natural selection will continually tend to preserve those individuals which are born with constitutions best adapted to their native countries. In treatises on many kinds of cultivated plants, certain varieties are said to withstand certain climates better than others: this is very strikingly shown in works on fruit trees published in the United States, in which certain varieties are habitually recommended for the northern, and others for the southern States; and as most of these varieties are of recent origin, they cannot owe their constitutional differences to habit. The case of the Jerusalem artichoke, which is never propagated by seed, and of which consequently new varieties have not been produced, has even been advanced for it is now as tender as ever it was -- as proving that acclimatisation cannot be effected! The case, also, of the kidney-bean has been often cited for a similar purpose, and with much greater weight; but until some one will sow, during a score of generations, his kidney-beans so early that a very large proportion are destroyed by frost, and then collect seed from the few survivors, with care to prevent accidental crosses, and then again get seed from these seedlings, with the same precautions, the experiment cannot be said to have been even tried. Nor let it be supposed that no differences in the constitution of seedling kidney-beans ever appear, for an account has been published how much more hardy some seedlings appeared to be than others.On the whole, I think we may conclude that habit, use, and disuse, have, in some cases, played a considerable part in the modification of the constitution, and of the structure of various organs; but that the effects of use and disuse have often been largely combined with, and sometimes overmastered by, the natural selection of innate differences.
2.  But we have better evidence on this subject than mere theoretical calculations, namely, the numerous recorded cases of the astonishingly rapid increase of various animals in a state of nature, when circumstances have been favourable to them during two or three following seasons. Still more striking is the evidence from our domestic animals of many kinds which have run wild in several parts of the world: if the statements of the rate of increase of slow-breeding cattle and horses in South America, and latterly in Australia, had not been well authenticated, they would have been quite incredible. So it is with plants: cases could be given of introduced plants which have become common throughout whole islands in a period of less than ten years, Several of the plants now most numerous over the wide plains of La Plata, clothing square leagues of surface almost to the exclusion of all other plants, have been introduced from Europe; and there are plants which now range in India, as I hear from Dr Falconer, from Cape Comorin to the Himalaya, which have been imported from America since its discovery. In such cases, and endless instances could be given, no one supposes that the fertility of these animals or plants has been suddenly and temporarily increased in any sensible degree. The obvious explanation is that the conditions of life have been very favourable, and that there has consequently been less destruction of the old and young, and that nearly all the young have been enabled to breed. In such cases the geometrical ratio of increase, the result of which never fails to be surprising, simply explains the extraordinarily rapid increase and wide diffusion of naturalised productions in their new homes.In a state of nature almost every plant produces seed, and amongst animals there are very few which do not annually pair. Hence we may confidently assert, that all plants and animals are tending to increase at a geometrical ratio, that all would most rapidly stock every station in which they could any how exist, and that the geometrical tendency to increase must be checked by destruction at some period of life. Our familiarity with the larger domestic animals tends, I think, to mislead us: we see no great destruction falling on them, and we forget that thousands are annually slaughtered for food, and that in a state of nature an equal number would have somehow to be disposed of.
3.  It is good thus to try in our imagination to give any form some advantage over another. Probably in no single instance should we know what to do, so as to succeed. It will convince us of our ignorance on the mutual relations of all organic beings; a conviction as necessary, as it seems to be difficult to acquire. All that we can do, is to keep steadily in mind that each organic being is striving to increase at a geometrical ratio; that each at some period of its life, during some season of the year, during each generation or at intervals, has to struggle for life, and to suffer great destruction. When we reflect on this struggle, we may console ourselves with the full belief, that the war of nature is not incessant, that no fear is felt, that death is generally prompt, and that the vigorous, the healthy, and the happy survive and multiply.
4、  --------------------------------------------------------------------------------
5、  I think these views further explain what has sometimes been noticed namely that we know nothing about the origin or history of any of our domestic breeds. But, in fact, a breed, like a dialect of a language, can hardly be said to have had a definite origin. A man preserves and breeds from an individual with some slight deviation of structure, or takes more care than usual in matching his best animals and thus improves them, and the improved individuals slowly spread in the immediate neighbourhood. But as yet they will hardly have a distinct name, and from being only slightly valued, their history will be disregarded. When further improved by the same slow and gradual process, they will spread more widely, and will get recognised as something distinct and valuable, and will then probably first receive a provincial name. In semi-civilised countries, with little free communication, the spreading and knowledge of any new sub-breed will be a slow process. As soon as the points of value of the new sub-breed are once fully acknowledged, the principle, as I have called it, of unconscious selection will always tend, perhaps more at one period than at another, as the breed rises or falls in fashion, perhaps more in one district than in another, according to the state of civilisation of the inhabitants slowly to add to the characteristic features of the breed, whatever they may be. But the chance will be infinitely small of any record having been preserved of such slow, varying, and insensible changes.I must now say a few words on the circumstances, favourable, or the reverse, to man's power of selection. A high degree of variability is obviously favourable, as freely giving the materials for selection to work on; not that mere individual differences are not amply sufficient, with extreme care, to allow of the accumulation of a large amount of modification in almost any desired direction. But as variations manifestly useful or pleasing to man appear only occasionally, the chance of their appearance will be much increased by a large number of individuals being kept; and hence this comes to be of the highest importance to success. On this principle Marshall has remarked, with respect to the sheep of parts of Yorkshire, that 'as they generally belong to poor people, and are mostly in small lots, they never can be improved.' On the other hand, nurserymen, from raising large stocks of the same plants, are generally far more successful than amateurs in getting new and valuable varieties. The keeping of a large number of individuals of a species in any country requires that the species should be placed under favourable conditions of life, so as to breed freely in that country. When the individuals of any species are scanty, all the individuals, whatever their quality may be, will generally be allowed to breed, and this will effectually prevent selection. But probably the most important point of all, is, that the animal or plant should be so highly useful to man, or so much valued by him, that the closest attention should be paid to even the slightest deviation in the qualities or structure of each individual. Unless such attention be paid nothing can be effected. I have seen it gravely remarked, that it was most fortunate that the strawberry began to vary just when gardeners began to attend closely to this plant. No doubt the strawberry had always varied since it was cultivated, but the slight varieties had been neglected. As soon, however, as gardeners picked out individual plants with slightly larger, earlier, or better fruit, and raised seedlings from them, and again picked out the best seedlings and bred from them, then, there appeared (aided by some crossing with distinct species) those many admirable varieties of the strawberry which have been raised during the last thirty or forty years.In the case of animals with separate sexes, facility in preventing crosses is an important element of success in the formation of new races, at least, in a country which is already stocked with other races. In this respect enclosure of the land plays a part. Wandering savages or the inhabitants of open plains rarely possess more than one breed of the same species. Pigeons can be mated for life, and this is a great convenience to the fancier, for thus many races may be kept true, though mingled in the same aviary; and this circumstance must have largely favoured the improvement and formation of new breeds. Pigeons, I may add, can be propagated in great numbers and at a very quick rate, and inferior birds may be freely rejected, as when killed they serve for food. On the other hand, cats, from their nocturnal rambling habits, cannot be matched, and, although so much valued by women and children, we hardly ever see a distinct breed kept up; such breeds as we do sometimes see are almost always imported from some other country, often from islands. Although I do not doubt that some domestic animals vary less than others, yet the rarity or absence of distinct breeds of the cat, the donkey, peacock, goose, &c., may be attributed in main part to selection not having been brought into play: in cats, from the difficulty in pairing them; in donkeys, from only a few being kept by poor people, and little attention paid to their breeding; in peacocks, from not being very easily reared and a large stock not kept; in geese, from being valuable only for two purposes, food and feathers, and more especially from no pleasure having been felt in the display of distinct breeds.To sum up on the origin of our Domestic Races of animals and plants. I believe that the conditions of life, from their action on the reproductive system, are so far of the highest importance as causing variability. I do not believe that variability is an inherent and necessary contingency, under all circumstances, with all organic beings, as some authors have thought. The effects of variability are modified by various degrees of inheritance and of reversion. Variability is governed by many unknown laws, more especially by that of correlation of growth. Something may be attributed to the direct action of the conditions of life. Something must be attributed to use and disuse. The final result is thus rendered infinitely complex. In some cases, I do not doubt that the intercrossing of species, aboriginally distinct, has played an important part in the origin of our domestic productions. When in any country several domestic breeds have once been established, their occasional intercrossing, with the aid of selection, has, no doubt, largely aided in the formation of new sub-breeds; but the importance of the crossing of varieties has, I believe, been greatly exaggerated, both in regard to animals and to those plants which are propagated by seed. In plants which are temporarily propagated by cuttings, buds, &c., the importance of the crossing both of distinct species and of varieties is immense; for the cultivator here quite disregards the extreme variability both of hybrids and mongrels, and the frequent sterility of hybrids; but the cases of plants not propagated by seed are of little importance to us, for their endurance is only temporary. Over all these causes of Change I am convinced that the accumulative action of Selection, whether applied methodically and more quickly, or unconsciously and more slowly, but more efficiently, is by far the predominant power.

旧版特色

!

网友评论(S7z7jgbV30214))

  • 顾炎武 08-11

      On the other hand, in many cases, a large stock of individuals of the same species, relatively to the numbers of its enemies, is absolutely necessary for its preservation. Thus we can easily raise plenty of corn and rape-seed, &c., in our fields, because the seeds are in great excess compared with the number of birds which feed on them; nor can the birds, though having a superabundance of food at this one season, increase in number proportionally to the supply of seed, as their numbers are checked during winter: but any one who has tried, knows how troublesome it is to get seed from a few wheat or other such plants in a garden; I have in this case lost every single seed. This view of the necessity of a large stock of the same species for its preservation, explains, I believe, some singular facts in nature, such as that of very rare plants being sometimes extremely abundant in the few spots where they do occur; and that of some social plants being social, that is, abounding in individuals, even on the extreme confines of their range. For in such cases, we may believe, that a plant could exist only where the conditions of its life were so favourable that many could exist together, and thus save each other from utter destruction. I should add that the good effects of frequent intercrossing, and the ill effects of close interbreeding, probably come into play in some of these cases; but on this intricate subject I will not here enlarge.Many cases are on record showing how complex and unexpected are the checks and relations between organic beings, which have to struggle together in the same country. I will give only a single instance, which, though a simple one, has interested me. In Staffordshire, on the estate of a relation where I had ample means of investigation, there was a large and extremely barren heath, which had never been touched by the hand of man; but several hundred acres of exactly the same nature had been enclosed twenty-five years previously and planted with Scotch fir. The change in the native vegetation of the planted part of the heath was most remarkable, more than is generally seen in passing from one quite different soil to another: not only the proportional numbers of the heath-plants were wholly changed, but twelve species of plants (not counting grasses and carices) flourished in the plantations, which could not be found on the heath. The effect on the insects must have been still greater, for six insectivorous birds were very common in the plantations, which were not to be seen on the heath; and the heath was frequented by two or three distinct insectivorous birds. Here we see how potent has been the effect of the introduction of a single tree, nothing whatever else having been done, with the exception that the land had been enclosed, so that cattle could not enter. But how important an element enclosure is, I plainly saw near Farnham, in Surrey. Here there are extensive heaths, with a few clumps of old Scotch firs on the distant hill-tops: within the last ten years large spaces have been enclosed, and self-sown firs are now springing up in multitudes, so close together that all cannot live. When I ascertained that these young trees had not been sown or planted, I was so much surprised at their numbers that I went to several points of view, whence I could examine hundreds of acres of the unenclosed heath, and literally I could not see a single Scotch fir, except the old planted clumps. But on looking closely between the stems of the heath, I found a multitude of seedlings and little trees, which had been perpetually browsed down by the cattle. In one square yard, at a point some hundreds yards distant from one of the old clumps, I counted thirty-two little trees; and one of them, judging from the rings of growth, had during twenty-six years tried to raise its head above the stems of the heath, and had failed. No wonder that, as soon as the land was enclosed, it became thickly clothed with vigorously growing young firs. Yet the heath was so extremely barren and so extensive that no one would ever have imagined that cattle would have so closely and effectually searched it for food.Here we see that cattle absolutely determine the existence of the Scotch fir; but in several parts of the world insects determine the existence of cattle. Perhaps Paraguay offers the most curious instance of this; for here neither cattle nor horses nor dogs have ever run wild, though they swarm southward and northward in a feral state; and Azara and Rengger have shown that this is caused by the greater number in Paraguay of a certain fly, which lays its eggs in the navels of these animals when first born. The increase of these flies, numerous as they are, must be habitually checked by some means, probably by birds. Hence, if certain insectivorous birds (whose numbers are probably regulated by hawks or beasts of prey) were to increase in Paraguay, the flies would decrease then cattle and horses would become feral, and this would certainly greatly alter (as indeed I have observed in parts of South America) the vegetation: this again would largely affect the insects; and this, as we just have seen in Staffordshire, the insectivorous birds, and so onwards in ever-increasing circles of complexity. We began this series by insectivorous birds, and we have ended with them. Not that in nature the relations can ever be as simple as this. Battle within battle must ever be recurring with varying success; and yet in the long-run the forces are so nicely balanced, that the face of nature remains uniform for long periods of time, though assuredly the merest trifle would often give the victory to one organic being over another. Nevertheless so profound is our ignorance, and so high our presumption, that we marvel when we hear of the extinction of an organic being; and as we do not see the cause, we invoke cataclysms to desolate the world, or invent laws on the duration of the forms of life!I am tempted to give one more instance showing how plants and animals, most remote in the scale of nature, are bound together by a web of complex relations. I shall hereafter have occasion to show that the exotic Lobelia fulgens, in this part of England, is never visited by insects, and consequently, from its peculiar structure, never can set a seed. Many of our orchidaceous plants absolutely require the visits of moths to remove their pollen-masses and thus to fertilise them. I have, also, reason to believe that humble-bees are indispensable to the fertilisation of the heartsease (Viola tricolor), for other bees do not visit this flower. From experiments which I have tried, I have found that the visits of bees, if not indispensable, are at least highly beneficial to the fertilisation of our clovers; but humble-bees alone visit the common red clover (Trifolium pratense), as other bees cannot reach the nectar. Hence I have very little doubt, that if the whole genus of humble-bees became extinct or very rare in England, the heartsease and red clover would become very rare, or wholly disappear. The number of humble-bees in any district depends in a great degree on the number of field-mice, which destroy their combs and nests; and Mr H. Newman, who has long attended to the habits of humble-bees, believes that 'more than two thirds of them are thus destroyed all over England.' Now the number of mice is largely dependent, as every one knows, on the number of cats; and Mr Newman says, 'Near villages and small towns I have found the nests of humble-bees more numerous than elsewhere, which I attribute to the number of cats that destroy the mice.' Hence it is quite credible that the presence of a feline animal in large numbers in a district might determine, through the intervention first of mice and then of bees, the frequency of certain flowers in that district!In the case of every species, many different checks, acting at different periods of life, and during different seasons or years, probably come into play; some one check or some few being generally the most potent, but all concurring in determining the average number or even the existence of the species. In some cases it can be shown that widely-different checks act on the same species in different districts. When we look at the plants and bushes clothing an entangled bank, we are tempted to attribute their proportional numbers and kinds to what we call chance. But how false a view is this! Every one has heard that when an American forest is cut down, a very different vegetation springs up; but it has been observed that the trees now growing on the ancient Indian mounds, in the Southern United States, display the same beautiful diversity and proportion of kinds as in the surrounding virgin forests. What a struggle between the several kinds of trees must here have gone on during long centuries, each annually scattering its seeds by the thousand; what war between insect and insect between insects, snails, and other animals with birds and beasts of prey all striving to increase, and all feeding on each other or on the trees or their seeds and seedlings, or on the other plants which first clothed the ground and thus checked the growth of the trees! Throw up a handful of feathers, and all must fall to the ground according to definite laws; but how simple is this problem compared to the action and reaction of the innumerable plants and animals which have determined, in the course of centuries, the proportional numbers and kinds of trees now growing on the old Indian ruins!The dependency of one organic being on another, as of a parasite on its prey, lies generally between beings remote in the scale of nature. This is often the case with those which may strictly be said to struggle with each other for existence, as in the case of locusts and grass-feeding quadrupeds. But the struggle almost invariably will be most severe between the individuals of the same species, for they frequent the same districts, require the same food, and are exposed to the same dangers. In the case of varieties of the same species, the struggle will generally be almost equally severe, and we sometimes see the contest soon decided: for instance, if several varieties of wheat be sown together, and the mixed seed be resown, some of the varieties which best suit the soil or climate, or are naturally the most fertile, will beat the others and so yield more seed, and will consequently in a few years quite supplant the other varieties. To keep up a mixed stock of even such extremely close varieties as the variously coloured sweet-peas, they must be each year harvested separately, and the seed then mixed in due proportion, otherwise the weaker kinds will steadily decrease in numbers and disappear. So again with the varieties of sheep: it has been asserted that certain mountain-varieties will starve out other mountain-varieties, so that they cannot be kept together. The same result has followed from keeping together different varieties of the medicinal leech. It may even be doubted whether the varieties of any one of our domestic plants or animals have so exactly the same strength, habits, and constitution, that the original proportions of a mixed stock could be kept up for half a dozen generations, if they were allowed to struggle together, like beings in a state of nature, and if the seed or young were not annually sorted.As species of the same genus have usually, though by no means invariably, some similarity in habits and constitution, and always in structure, the struggle will generally be more severe between species of the same genus, when they come into competition with each other, than between species of distinct genera. We see this in the recent extension over parts of the United States of one species of swallow having caused the decrease of another species. The recent increase of the missel-thrush in parts of Scotland has caused the decrease of the song-thrush. How frequently we hear of one species of rat taking the place of another species under the most different climates! In Russia the small Asiatic cockroach has everywhere driven before it its great congener. One species of charlock will supplant another, and so in other cases. We can dimly see why the competition should be most severe between allied forms, which fill nearly the same place in the economy of nature; but probably in no one case could we precisely say why one species has been victorious over another in the great battle of life.A corollary of the highest importance may be deduced from the foregoing remarks, namely, that the structure of every organic being is related, in the most essential yet often hidden manner, to that of all other organic beings, with which it comes into competition for food or residence, or from which it has to escape, or on which it preys. This is obvious in the structure of the teeth and talons of the tiger; and in that of the legs and claws of the parasite which clings to the hair on the tiger's body. But in the beautifully plumed seed of the dandelion, and in the flattened and fringed legs of the water-beetle, the relation seems at first confined to the elements of air and water. Yet the advantage of plumed seeds no doubt stands in the closest relation to the land being already thickly clothed by other plants; so that the seeds may be widely distributed and fall on unoccupied ground. In the water-beetle, the structure of its legs, so well adapted for diving, allows it to compete with other aquatic insects, to hunt for its own prey, and to escape serving as prey to other animals.The store of nutriment laid up within the seeds of many plants seems at first sight to have no sort of relation to other plants. But from the strong growth of young plants produced from such seeds (as peas and beans), when sown in the midst of long grass, I suspect that the chief use of the nutriment in the seed is to favour the growth of the young seedling, whilst struggling with other plants growing vigorously all around.

  • 马冬根 08-11

      Next Chapter

  • 张永贵 08-11

       Our ignorance of the laws of variation is profound. Not in one case out of a hundred can we pretend to assign any reason why this or that part differs, more or less, from the same part in the parents. But whenever we have the means of instituting a comparison, the same laws appear to have acted in producing the lesser differences between varieties of the same species, and the greater differences between species of the same genus. The external conditions of life, as climate and food, &c., seem to have induced some slight modifications. Habit in producing constitutional differences, and use in strengthening, and disuse in weakening and diminishing organs, seem to have been more potent in their effects. Homologous parts tend to vary in the same way, and homologous parts tend to cohere. Modifications in hard parts and in external parts sometimes affect softer and internal parts. When one part is largely developed, perhaps it tends to draw nourishment from the adjoining parts; and every part of the structure which can be saved without detriment to the individual, will be saved. Changes of structure at an early age will generally affect parts subsequently developed; and there are very many other correlations of growth, the nature of which we are utterly unable to understand. Multiple parts are variable in number and in structure, perhaps arising from such parts not having been closely specialized to any particular function, so that their modifications have not been closely checked by natural selection. It is probably from this same cause that organic beings low in the scale of nature are more variable than those which have their whole organisation more specialized, and are higher in the scale. Rudimentary organs, from being useless, will be disregarded by natural selection, and hence probably are variable. Specific characters that is, the characters which have come to differ since the several species of the same genus branched off from a common parent are more variable than generic characters, or those which have long been inherited, and have not differed within this same period. In these remarks we have referred to special parts or organs being still variable, because they have recently varied and thus come to differ; but we have also seen in the second Chapter that the same principle applies to the whole individual; for in a district where many species of any genus are found that is, where there has been much former variation and differentiation, or where the manufactory of new specific forms has been actively at work there, on an average, we now find most varieties or incipient species. Secondary sexual characters are highly variable, and such characters differ much in the species of the same group. Variability in the same parts of the organisation has generally been taken advantage of in giving secondary sexual differences to the sexes of the same species, and specific differences to the several species of the same genus. Any part or organ developed to an extraordinary size or in an extraordinary manner, in comparison with the same part or organ in the allied species, must have gone through an extraordinary amount of modification since the genus arose; and thus we can understand why it should often still be variable in a much higher degree than other parts; for variation is a long-continued and slow process, and natural selection will in such cases not as yet have had time to overcome the tendency to further variability and to reversion to a less modified state. But when a species with any extraordinarily-developed organ has become the parent of many modified descendants which on my view must be a very slow process, requiring a long lapse of time in this case, natural selection may readily have succeeded in giving a fixed character to the organ, in however extraordinary a manner it may be developed. Species inheriting nearly the same constitution from a common parent and exposed to similar influences will naturally tend to present analogous variations, and these same species may occasionally revert to some of the characters of their ancient progenitors. Although new and important modifications may not arise from reversion and analogous variation, such modifications will add to the beautiful and harmonious diversity of nature.Whatever the cause may be of each slight difference in the offspring from their parents and a cause for each must exist it is the steady accumulation, through natural selection, of such differences, when beneficial to the individual, that gives rise to all the more important modifications of structure, by which the innumerable beings on the face of this earth are enabled to struggle with each other, and the best adapted to survive.

  • 荆洲 08-11

      The nature of the bond of correlation is very frequently quite obscure. M. Is. Geoffroy St Hilaire has forcibly remarked, that certain malconformations very frequently, and that others rarely coexist, without our being able to assign any reason. What can be more singular than the relation between blue eyes and deafness in cats, and the tortoise-shell colour with the female sex; the feathered feet and skin between the outer toes in pigeons, and the presence of more or less down on the young birds when first hatched, with the future colour of their plumage; or, again, the relation between the hair and teeth in the naked Turkish dog, though here probably homology comes into play? With respect to this latter case of correlation, I think it can hardly be accidental, that if we pick out the two orders of mammalia which are most abnormal in their dermal coverings, viz. Cetacea (whales) and Edentata (armadilloes, scaly ant-eaters, &c.), that these are likewise the most abnormal in their teeth.

  • 谭顺来 08-10

    {  A long list could easily be given of 'sporting plants;' by this term gardeners mean a single bud or offset, which suddenly assumes a new and sometimes very different character from that of the rest of the plant. Such buds can be propagated by grafting, &c., and sometimes by seed. These 'sports' are extremely rare under nature, but far from rare under cultivation; and in this case we see that the treatment of the parent has affected a bud or offset, and not the ovules or pollen. But it is the opinion of most physiologists that there is no essential difference between a bud and an ovule in their earliest stages of formation; so that, in fact,'sports' support my view, that variability may be largely attributed to the ovules or pollen, or to both, having been affected by the treatment of the parent prior to the act of conception. These cases anyhow show that variation is not necessarily connected, as some authors have supposed, with the act of generation.

  • 汤华明 08-09

      It is worth while to reflect for a moment on the character of the new species F14, which is supposed not to have diverged much in character, but to have retained the form of (F), either unaltered or altered only in a slight degree. In this case, its affinities to the other fourteen new species will be of a curious and circuitous nature. Having descended from a form which stood between the two parent-species (A) and (I), now supposed to be extinct and unknown, it will be in some degree intermediate in character between the two groups descended from these species. But as these two groups have gone on diverging in character from the type of their parents, the new species (F14) will not be directly intermediate between them, but rather between types of the two groups; and every naturalist will be able to bring some such case before his mind.}

  • 徐宗督 08-09

      These difficulties and objections may be classed under the following heads:-Firstly, why, if species have descended from other species by insensibly fine gradations, do we not everywhere see innumerable transitional forms? Why is not all nature in confusion instead of the species being, as we see them, well defined?

  • 杜庆海 08-09

      In man's methodical selection, a breeder selects for some definite object, and free intercrossing will wholly stop his work. But when many men, without intending to alter the breed, have a nearly common standard of perfection, and all try to get and breed from the best animals, much improvement and modification surely but slowly follow from this unconscious process of selection, notwithstanding a large amount of crossing with inferior animals. Thus it will be in nature; for within a confined area, with some place in its polity not so perfectly occupied as might be, natural selection will always tend to preserve all the individuals varying in the right direction, though in different degrees, so as better to fill up the unoccupied place. But if the area be large, its several districts will almost certainly present different conditions of life; and then if natural selection be modifying and improving a species in the several districts, there will be intercrossing with the other individuals of the same species on the confines of each. And in this case the effects of intercrossing can hardly be counterbalanced by natural selection always tending to modify all the individuals in each district in exactly the same manner to the conditions of each; for in a continuous area, the conditions will generally graduate away insensibly from one district to another. The intercrossing will most affect those animals which unite for each birth, which wander much, and which do not breed at a very quick rate. Hence in animals of this nature, for instance in birds, varieties will generally be confined to separated countries; and this I believe to be the case. In hermaphrodite organisms which cross only occasionally, and likewise in animals which unite for each birth, but which wander little and which can increase at a very rapid rate, a new and improved variety might be quickly formed on any one spot, and might there maintain itself in a body, so that whatever intercrossing took place would be chiefly between the individuals of the same new variety. A local variety when once thus formed might subsequently slowly spread to other districts. On the above principle, nurserymen always prefer getting seed from a large body of plants of the same variety, as the chance of intercrossing with other varieties is thus lessened.Even in the case of slow-breeding animals, which unite for each birth, we must not overrate the effects of intercrosses in retarding natural selection; for I can bring a considerable catalogue of facts, showing that within the same area, varieties of the same animal can long remain distinct, from haunting different stations, from breeding at slightly different seasons, or from varieties of the same kind preferring to pair together.

  • 阿格斯 08-08

       Thirdly, can instincts be acquired and modified through natural selection? What shall we say to so marvellous an instinct as that which leads the bee to make cells, which have practically anticipated the discoveries of profound mathematicians?

  • 苏松嘉 08-06

    {  Habit is hereditary with plants, as in the period of flowering, in the amount of rain requisite for seeds to germinate, in the time of sleep, &c., and this leads me to say a few words on acclimatisation. As it is extremely common for species of the same genus to inhabit very hot and very cold countries, and as I believe that all the species of the same genus have descended from a single parent, if this view be correct, acclimatisation must be readily effected during long-continued descent. It is notorious that each species is adapted to the climate of its own home: species from an arctic or even from a temperate region cannot endure a tropical climate, or conversely. So again, many succulent plants cannot endure a damp climate. But the degree of adaptation of species to the climates under which they live is often overrated. We may infer this from our frequent inability to predict whether or not an imported plant will endure our climate, and from the number of plants and animals brought from warmer countries which here enjoy good health. We have reason to believe that species in a state of nature are limited in their ranges by the competition of other organic beings quite as much as, or more than, by adaptation to particular climates. But whether or not the adaptation be generally very close, we have evidence, in the case of some few plants, of their becoming, to a certain extent, naturally habituated to different temperatures, or becoming acclimatised: thus the pines and rhododendrons, raised from seed collected by Dr Hooker from trees growing at different heights on the Himalaya were found in this country to possess different constitutional powers of resisting cold. Mr Thwaites informs me that he has observed similar facts in Ceylon, and analogous observations have been made by Mr H. C. Watson on European species of plants brought from the Azores to England. In regard to animals, several authentic cases could be given of species within historical times having largely extended their range from warmer to cooler latitudes, and conversely; but we do not positively know that these animals were strictly adapted to their native climate, but in all ordinary cases we assume such to be the case; nor do we know that they have subsequently become acclimatised to their new homes.As I believe that our domestic animals were originally chosen by uncivilised man because they were useful and bred readily under confinement, and not because they were subsequently found capable of far-extended transportation, I think the common and extraordinary capacity in our domestic animals of not only withstanding the most different climates but of being perfectly fertile (a far severer test) under them, may be used as an argument that a large proportion of other animals, now in a state of nature, could easily be brought to bear widely different climates. We must not, however, push the foregoing argument too far, on account of the probable origin of some of our domestic animals from several wild stocks: the blood, for instance, of a tropical and arctic wolf or wild dog may perhaps be mingled in our domestic breeds. The rat and mouse cannot be considered as domestic animals, but they have been transported by man to many parts of the world, and now have a far wider range than any other rodent, living free under the cold climate of Faroe in the north and of the Falklands in the south, and on many islands in the torrid zones. Hence I am inclined to look at adaptation to any special climate as a quality readily grafted on an innate wide flexibility of constitution, which is common to most animals. On this view, the capacity of enduring the most different climates by man himself and by his domestic animals, and such facts as that former species of the elephant and rhinoceros were capable of enduring a glacial climate, whereas the living species are now all tropical or sub-tropical in their habits, ought not to be looked at as anomalies, but merely as examples of a very common flexibility of constitution, brought, under peculiar circumstances, into play.How much of the acclimatisation of species to any peculiar climate is due to mere habit, and how much to the natural selection of varieties having different innate constitutions, and how much to means combined, is a very obscure question. That habit or custom has some influence I must believe, both from analogy, and from the incessant advice given in agricultural works, even in the ancient Encyclopaedias of China, to be very cautious in transposing animals from one district to another; for it is not likely that man should have succeeded in selecting so many breeds and sub-breeds with constitutions specially fitted for their own districts: the result must, I think, be due to habit. On the other hand, I can see no reason to doubt that natural selection will continually tend to preserve those individuals which are born with constitutions best adapted to their native countries. In treatises on many kinds of cultivated plants, certain varieties are said to withstand certain climates better than others: this is very strikingly shown in works on fruit trees published in the United States, in which certain varieties are habitually recommended for the northern, and others for the southern States; and as most of these varieties are of recent origin, they cannot owe their constitutional differences to habit. The case of the Jerusalem artichoke, which is never propagated by seed, and of which consequently new varieties have not been produced, has even been advanced for it is now as tender as ever it was -- as proving that acclimatisation cannot be effected! The case, also, of the kidney-bean has been often cited for a similar purpose, and with much greater weight; but until some one will sow, during a score of generations, his kidney-beans so early that a very large proportion are destroyed by frost, and then collect seed from the few survivors, with care to prevent accidental crosses, and then again get seed from these seedlings, with the same precautions, the experiment cannot be said to have been even tried. Nor let it be supposed that no differences in the constitution of seedling kidney-beans ever appear, for an account has been published how much more hardy some seedlings appeared to be than others.On the whole, I think we may conclude that habit, use, and disuse, have, in some cases, played a considerable part in the modification of the constitution, and of the structure of various organs; but that the effects of use and disuse have often been largely combined with, and sometimes overmastered by, the natural selection of innate differences.

  • 冀文平 08-06

      by Charles Darwin

提交评论